home *** CD-ROM | disk | FTP | other *** search
- function th=armax(z,nn,maxiter,tol,lim,maxsize,Tcap)
- %ARMAX Computes the prediction error estimate of an ARMAX model.
- %
- % TH = armax(Z,NN)
- %
- % TH: returned as the estimated parameters of the ARMAX model
- % A(q) y(t) = B(q) u(t-nk) + C(q) e(t)
- % along with estimated covariances and structure information.
- % For the exact format of TH, see HELP THETA.
- %
- % Z : The output-input data Z=[y u], with y and u being column vectors.
- % For a time-series, Z=y only. The routine does not work for multi-
- % input systems. Use PEM for that case.
- %
- % NN: Initial value and structure information. When no initial parameter
- % estimates are available enter NN as
- % NN=[na nb nc nk], the orders and delay of the above model,or as
- % NN=[na nc] for the time-series case (ARMA-model). With an initial
- % estimate available in THI, a theta matrix of standard format, enter
- % NN=THI. Then the criterion minimization is initialized at THI.
- %
- % Some parameters associated with the algorithm are accessed by
- % TH = armax(Z,NN,maxiter,tol,lim,maxsize,T)
- % See HELP AUXVAR for an explanation of these and their default values.
-
- % L. Ljung 10-1-86,12-09-91
- % Copyright (c) 1986-92 by the MathWorks, Inc.
- % All Rights Reserved.
-
- %
- % *** Set up default values ***
- [Ncap,nz]=size(z);
- [nr,cc]=size(nn); nu=nz-1;
- maxsdef=idmsize(Ncap);
-
- if nargin<7, Tcap=[];end
- if nargin<6, maxsize=[];end
- if nargin<5, lim=[];end
- if nargin<4, tol=[];, end
- if nargin<3, maxiter=[]; end
- if isempty(Tcap),if nr>1,Tcap=gett(nn);else Tcap=1;end,end
- if isempty(maxsize),maxsize=maxsdef;end
- if isempty(lim),lim=1.6;end,if isempty(tol),tol=0.01;end
- if isempty(maxiter),maxiter=10;end
- if Tcap<0,Tcap=1;end, if maxsize<0,maxsize=maxsdef;end, if lim<0,lim=1.6;end
- if tol<0,tol=0.01;end,if maxiter<0, maxiter=10;end
-
- % *** Do some consistency tests ***
-
-
- if nz>Ncap, error('The data should be organized in column vectors')
- return,end
- if nu>1, error('This routine only works for single-input systems. Use PEM instead!')
- return,end
- if nr==1 & cc~=2*nu+2,
- disp('Incorrect number of orders specified:')
- disp('For a time series nn=[na nc]')
- disp('For a SISO system nn=[na nb nc nk]')
- error('see above')
- return,end
-
- % *** if nn has more than 1 row, it is a theta matrix
- % and we jump directly to the minimization ***
- %
- if nr>1, nu=nn(1,3);
- if nu>1, error('This routine only works for single input systems. Use PEM instead')
- return,end
- if nu==1, na=nn(1,4);nb=nn(1,5);nc=nn(1,6);nk=nn(1,9);
- else na=nn(1,4);nb=0;nc=nn(1,5);nk=0;end
- n=na+nb+nc; t=nn(3,1:n).';
- if nc>0, c=[1 t(na+nb+1:n).'];else c=1;,end
- if na>0,a=[1 t(1:na).'];else a=1;,end
- if nb>0,b=[zeros(1,nk) t(na+1:na+nb).'];,else b=0;,end
- ni=max([na nb+nk-1 nc]);
- e=pefilt(a,c,z(:,1)); if nu==1, e=e-pefilt(b,c,z(:,2),e(1:ni));end
- end
- if nr==1,
- if nu==0,
- na=nn(1); nc=nn(2); nb=0; nk=0; n=na+nc;
- v=z; narx=na; nd=na;
- end
- if nu==1,
- na=nn(1); nb=nn(2); nc=nn(3); nk=nn(4); n=sum(nn(1:3));
- narx=[na nb nk]; nd=0;
- end
- ni=max([na nb+nk-1 nc]);
- t=arx(z,narx,maxsize,Tcap,0);
- if na>0, a=[1 t(1:na).'];else a=1;end
- if nb>0, b=[zeros(1,nk) t(na+1:na+nb).'];end
- if nc==0 % then we use the arx-estimate for initial condition
- e=pefilt(a,[1],z(:,1));
- if nu==1, e=e-pefilt(b,[1],z(:,2),e(1:ni));end
- c=1;
- end
-
- if nc>0 %then we compute the IV-estimate in case nu==1
- if nu==1
- a=fstab(a);
- t=iv(z,narx,a,b,maxsize,Tcap,0);
- if na>0,a=[1 t(1:na).'];else a=1;end
- b=[zeros(1,nk) t(na+1:na+nb).'];
- v=filter(a,1,z(:,1))-filter(b,1,z(:,2));v(1:ni)=zeros(ni,1);
- end
- %
- % *** Determine the initial C-estimate by first building a
- % high order AR-model of the residuals v and the use the
- % LS-method with the new residuals as inputs ***
- %
- ord=min(na+nb+4*nc,length(v)/3);
- t1=arx(v,ord,maxsize,Tcap,0);
- e=pefilt([1 t1.'],1,v);
- t2=arx([v e],[nd nc 1],maxsize,Tcap,0);
- %
- % ** test the stability of the C-estimate **
- %
- c=[1 t2(nd+1:nd+nc).']; c=fstab(c);
- t2(nd+1:nd+nc)=c(2:nc+1).';
-
- if nu==1, t=[t;t2]; else t=t2;end
- %
- if nd==0, d=1; else d=[1 t2(1:nd).'];end
- e=pefilt(d,c,v,zeros(1,ni));
- end
- end
- % *** Display initial estimate ***
- %
- V=e'*e/(Ncap-ni);
- clc, disp([' INITIAL ESTIMATE'])
- disp(['Current loss:' num2str(V)])
- disp(['th-vector'])
- disp(t)
- %
- % *** start minimizing ***
- %
- % ** determine limit for robustification **
- if lim~=0, lim=median(abs(e-median(e)))*lim/0.7;end
- if lim==0,el=e;else
- [ne,me]=size(e);
- ll=ones(ne,me)*lim;la=abs(e)+eps*ll;el=e.*(min(la,ll)./la); clear ll,clear la,end
- g=ones(n,1); l=0; st=0; nmax=max([na nb+nk-1 nc]);
- %
- % ** the minimization loop **
- %
- while [norm(g)>tol l<maxiter st~=1]
- l=l+1;
- % * compute gradient *
- yf=filter(-1,c,z(:,1)); ef=filter(1,c,e);
- if nu==1, uf=filter(1,c,z(:,2));end
- M=floor(maxsize/n);
- R=zeros(n);F=zeros(n,1);
- for k1=nmax:M:Ncap-1
- jj=(k1+1:min(Ncap,k1+M));
- psi=zeros(length(jj),n);
- for k=1:na, psi(:,k)=yf(jj-k);end
- for k=1:nb, psi(:,na+k)=uf(jj-k-nk+1);end
- for k=1:nc, psi(:,k+nb+na)=ef(jj-k);end
- R=R+psi'*psi; F=F+psi'*el(jj);
- end
- if Ncap>M, g=R\F; else g=psi\el(jj);end,grad=F;
- %
- % * search along the g-direction *
- %
- [t1,e,el,V1,c,st]=searchax(z,t,g,lim,V,na,nb,nc,nk,ni);
- if st==1, [t1,e,el,V1,c,st]=searchax(z,t,grad/trace(R)*length(R),lim,V,na,nb,nc,nk,ni);end
- home
- disp([' ITERATION # ' int2str(l)])
- disp(['Current loss: ' num2str(V1) ' Previous loss: ' num2str(V)])
- disp(['Current th prev. th gn-dir'])
- disp([t1 t g])
- disp(['Norm of gn-vector: ' num2str(norm(g))])
-
- if st==1, disp(['No improvement of the criterion possible along the search direction'])
- disp(['Iterations therefore terminated']),end
- t=t1; V=V1;
- end
- th=zeros(3+n,max([6+3*nu 7 n]));
- V=e'*e/(length(e)-ni);
- if nu==1
- th(1,1:9)=[V Tcap 1 na nb nc 0 0 nk];
- else th(1,1:6)=[V Tcap 0 na nc 0];end
- th(2,1)=V*(1+n/Ncap)/(1-n/Ncap);
- ti=fix(clock); ti(1)=ti(1)/100;
- th(2,2:6)=ti(1:5);
- th(2,7)=7;
- th(3,1:n)=t.';
- if maxiter==0,return,end
- if Ncap>M, PP=inv(R); else PP=inv(psi'*psi);end
- th(4:3+n,1:n)=V*PP;
-
-