home *** CD-ROM | disk | FTP | other *** search
- function [order,wn] = ellipord(wp,ws,rp,rs,opt)
- %ELLIPORD Elliptic filter order selection.
- % [N, Wn] = ELLIPORD(Wp, Ws, Rp, Rs) returns the order N of the
- % lowest order digital elliptic filter that loses no more than
- % Rp dB in the passband and has at least Rs dB of attenuation
- % in the stopband. The passband runs from 0 to Wp and the
- % stopband extends from Ws to 1.0, the Nyquist frequency.
- % ELLIPORD also returns Wn, the elliptic natural frequency to
- % use with ELLIP to achieve the specifications.
- % [N, Wn] = ELLIPORD(Wp, Ws, Rp, Rs, 's') does the computation
- % for an analog filter.
- % See also ELLIP, BUTTORD, CHEB1ORD, and CHEB2ORD.
-
- % Reference: Rabiner and Gold, p 241.
-
- % L. Shure 6-9-88
- % updated 11-18-92, T. Krauss
- % Copyright (c) 1988, 1992 by the MathWorks, Inc.
-
- if nargin == 4
- opt = 'z';
- elseif nargin == 5
- if ~strcmp(opt,'z') & ~strcmp(opt,'s')
- error('Invalid option for final argument.');
- end
- end
- np1 = length(wp);
- ns1 = length(ws);
- if (np1 ~= ns1)
- error('The frequency vectors must both be the same length.')
- end
- ftype = 2*(np1 - 1);
- if wp(1) < ws(1)
- ftype = ftype + 1; % low (1) or reject (3)
- else
- ftype = ftype + 2; % high (2) or pass (4)
- end
-
- % natural frequencies are simply the given band-edges:
- wn=wp;
-
- % first, prewarp frequencies from digital (unit circle) to analog (imag. axis):
- if strcmp(opt,'z') % digital
- WP=tan(pi*wp/2);
- WS=tan(pi*ws/2);
- else % don't have to if analog already
- WP=wp;
- WS=ws;
- end
-
- % next, transform to low pass prototype with passband edge of 1 and stopband
- % edges determined by the following: (see Rabiner and Gold, p.258)
- if ftype == 1 % low
- WA=WS/WP;
- elseif ftype == 2 % high
- WA=WP/WS;
- elseif ftype == 3 % stop
- WA=(WS*(WP(1)-WP(2)))./(WS.^2 - WP(1)*WP(2));
- elseif ftype == 4 % pass
- WA=(WS.^2 - WP(1)*WP(2))./(WS*(WP(1)-WP(2)));
- end
-
- % find the minimum order elliptic filter to meet the more demanding spec:
- WA = min(abs(WA));
- epsilon = sqrt(10 .^ (0.1*rp)-1);
- k1 = epsilon./sqrt(10 .^ (0.1*rs)-1);
- k = 1/WA;
- capk = ellipke([k.^2 1-k.^2]);
- capk1 = ellipke([(k1 .^2) 1-(k1 .^2)]);
- order = ceil(capk(1)*capk1(2)/(capk(2)*capk1(1)));
-
-