home *** CD-ROM | disk | FTP | other *** search
- function [num, den, z, p] = butter(n, Wn, ftype)
- %BUTTER Butterworth digital filter design.
- % [B,A] = BUTTER(N,Wn) designs an N'th order lowpass digital
- % Butterworth filter and returns the filter coefficients in length
- % N+1 vectors B and A. The cut-off frequency Wn must be
- % 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.
- %
- % If Wn is a two-element vector, Wn = [W1 W2], BUTTER returns an
- % order 2N bandpass filter with passband W1 < W < W2.
- % [B,A] = BUTTER(N,Wn,'high') designs a highpass filter.
- % [B,A] = BUTTER(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2].
- %
- % When used with three left-hand arguments, as in
- % [Z,P,K] = BUTTER(...), the zeros and poles are returned in
- % length N column vectors Z and P, and the gain in scalar K.
- %
- % When used with four left-hand arguments, as in
- % [A,B,C,D] = BUTTER(...), state-space matrices are returned.
- %
- % See also BUTTORD, CHEBY1, CHEBY2, FREQZ and FILTER.
-
- % J.N. Little 1-14-87
- % Revised 1-14-88 JNL, 4-29-88 LS
- % (c) Copyright 1987-88, by The MathWorks, Inc.
-
- % References:
- % [1] T. W. Parks and C. S. Burrus, Digital Filter Design,
- % John Wiley & Sons, 1987, chapter 7, section 7.3.3.
-
- btype = 1;
- if nargin == 3
- btype = 3;
- end
- if max(size(Wn)) == 2
- btype = btype + 1;
- end
-
- % step 1: get analog, pre-warped frequencies
- fs = 2;
- u = 2*fs*tan(pi*Wn/fs);
-
- % step 2: convert to low-pass prototype estimate
- if btype == 1 % lowpass
- Wn = u;
- elseif btype == 2 % bandpass
- Bw = u(2) - u(1);
- Wn = sqrt(u(1)*u(2)); % center frequency
- elseif btype == 3 % highpass
- Wn = u;
- elseif btype == 4 % bandstop
- Bw = u(2) - u(1);
- Wn = sqrt(u(1)*u(2)); % center frequency
- end
-
- % step 3: Get N-th order Butterworth analog lowpass prototype
- [z,p,k] = buttap(n);
-
- % Transform to state-space
- [a,b,c,d] = zp2ss(z,p,k);
-
- % step 4: Transform to lowpass, bandpass, highpass, or bandstop of desired Wn
- if btype == 1 % Lowpass
- [a,b,c,d] = lp2lp(a,b,c,d,Wn);
-
- elseif btype == 2 % Bandpass
- [a,b,c,d] = lp2bp(a,b,c,d,Wn,Bw);
-
- elseif btype == 3 % Highpass
- [a,b,c,d] = lp2hp(a,b,c,d,Wn);
-
- elseif btype == 4 % Bandstop
- [a,b,c,d] = lp2bs(a,b,c,d,Wn,Bw);
- end
-
- % step 5: Use Bilinear transformation to find discrete equivalent:
- [a,b,c,d] = bilinear(a,b,c,d,fs);
-
- if nargout == 4
- num = a;
- den = b;
- z = c;
- p = d;
- else % nargout <= 3
- % Transform to zero-pole-gain and polynomial forms:
- if nargout == 3
- [z,p,k] = ss2zp(a,b,c,d,1);
- num = z;
- den = p;
- z = k;
- else % nargout <= 2
- den = poly(a);
- num = poly(a-b*c)+(d-1)*den;
- end
- end
-
-