home *** CD-ROM | disk | FTP | other *** search
- function output = csapi(x,y,xx)
- % CSAPI Cubic spline interpolation.
- %
- % values = csapi(x,y,xx)
- %
- % returns the values at xx of the cubic spline interpolant to the
- % given data (x,y) (using the not-a-knot end condition).
- % The alternative call
- %
- % pp = csapi(x,y)
- %
- % returns the pp-form of the cubic spline interpolant instead, for later
- % use with fnval, fnder, etc.
-
- % C. de Boor / latest change: Feb.25, 1989
- % Copyright (c) 1990-92 by Carl de Boor and The MathWorks, Inc.
-
- % Generate the cubic spline interpolant in pp form, depending on
- % the number of data points.
-
- n=length(x);[xi,ind]=sort(x);xi=xi(:);
- if n<2,
- error('There should be at least two data points!')
- elseif all(diff(xi))==0,
- error('The data abscissae should be distinct!')
- elseif n~=length(y),
- error('Abscissa and ordinate vector should be of the same length!')
- else
- yi=y(ind);yi=yi(:);
- if (n==2), % the interpolant is a straight line
- pp=ppmak(xi',[diff(yi)./diff(xi) yi(1)],1);
- elseif (n==3), % the interpolant is a parabola
- yi(2:3)=diff(yi)./diff(xi);
- yi(3)=(yi(3)-yi(2))/(xi(3)-xi(1));
- yi(2)=yi(2)-yi(3)*(xi(2)-xi(1));
- pp = ppmak([xi(1),xi(3)],yi([3 2 1])',1);
- else % set up the linear system for solving for the slopes at xi .
- dx=diff(xi);divdif=diff(yi)./dx;xi31=xi(3)-xi(1);xin=xi(n)-xi(n-2);
- c = diag([dx(2:n-1);0],-1)+2*diag([0;dx(2:n-1)+dx(1:n-2);0]) ...
- + diag([0;dx(1:n-2)],1);
- c(1,1:2)=[dx(2) xi31];
- c(n,n-1:n) = [xin dx(n-2)];
- b=zeros(n,1);
- b(1)=((dx(1)+2*xi31)*dx(2)*divdif(1)+dx(1)^2*divdif(2))/xi31;
- b(2:n-1)=3*(dx(2:n-1).*divdif(1:n-2)+dx(1:n-2).*divdif(2:n-1));
- b(n)=...
- (dx(n-1)^2*divdif(n-2)+(2*xin+dx(n-1))*dx(n-2)*divdif(n-1))/xin;
-
- % solve for the slopes and convert to pp form
- s=c\b;
- c4=(s(1:n-1)+s(2:n)-2*divdif(1:n-1))./dx;
- c3=(divdif(1:n-1)-s(1:n-1))./dx - c4;
- pp=ppmak(xi',[c4./dx c3 s(1:n-1) yi(1:n-1)],1);
- end
- if nargin==2,
- output=pp;
- else
- output=ppual(pp,xx);
- end
- end
-