home *** CD-ROM | disk | FTP | other *** search
- function [l,p,e] = lqew(a,g,c,j,q,r)
- %LQEW Linear quadratic estimator design for the continuous-time
- % system with process noise feedthrough
- % .
- % x = Ax + Bu + Gw {State equation}
- % z = Cx + Du + Jw + v {Measurements}
- %
- % and with process noise and measurement noise covariances:
- % E{w} = E{v} = 0, E{ww'} = Q, E{vv'} = R, E{wv'} = 0
- %
- % L = LQEW(A,G,C,J,Q,R) returns the gain matrix L such that the
- % stationary Kalman filter: .
- % x = Ax + Bu + L(z - Cx - Du)
- %
- % produces an LQG optimal estimate of x. The estimator can be formed
- % with ESTIM.
- %
- % [L,P,E] = LQEW(A,G,C,J,Q,R) returns the gain matrix L, the Riccati
- % equation solution P which is the estimate error covariance, and
- % the closed loop eigenvalues of the estimator: E = EIG(A-L*C).
- %
- % See also: LQE, LQE2, and ESTIM.
-
- % Clay M. Thompson 7-23-90
- % Copyright (c) 1986-93 by the MathWorks, Inc.
-
- error(nargchk(6,6,nargin));
-
- rr = r + j*q*j';
- nn = q*j';
- [l,p,e] = lqe(a,g,c,q,rr,nn);
-
-