home *** CD-ROM | disk | FTP | other *** search
- function [l,p,e] = lqe(a,g,c,q,r,t)
- %LQE Linear quadratic estimator design. For the continuous-time system:
- % .
- % x = Ax + Bu + Gw {State equation}
- % z = Cx + Du + v {Measurements}
- % with process noise and measurement noise covariances:
- % E{w} = E{v} = 0, E{ww'} = Q, E{vv'} = R, E{wv'} = 0
- %
- % L = LQE(A,G,C,Q,R) returns the gain matrix L such that the
- % stationary Kalman filter:
- % .
- % x = Ax + Bu + L(z - Cx - Du)
- %
- % produces an LQG optimal estimate of x. The estimator can be formed
- % with ESTIM.
- %
- % [L,P,E] = LQE(A,G,C,Q,R) returns the gain matrix L, the Riccati
- % equation solution P which is the estimate error covariance, and
- % the closed loop eigenvalues of the estimator: E = EIG(A-L*C).
- %
- % [L,P,E] = LQE(A,G,C,Q,R,N) solves the estimator problem when the
- % process and sensor noise is correlated: E{wv'} = N.
- %
- % See also: LQEW, LQE2, and ESTIM.
-
- % J.N. Little 4-21-85
- % Revised Clay M. Thompson 7-16-90
- % Copyright (c) 1986-93 by the MathWorks, Inc.
-
- error(nargchk(5,6,nargin));
-
- % Calculate estimator gains using LQR and duality:
- if nargin==5
- [k,s,e] = lqr(a',c',g*q*g',r);
- else
- [k,s,e] = lqr(a',c',g*q*g',r,g*t);
- end
- l=k';
- p=s';
-
-