home *** CD-ROM | disk | FTP | other *** search
-
- FUNCTION ArcTanh(x)
- REAL x
- ArcTanh = 0.5 * LOG((1.0 + x) / (1.0 - x))
- END !FUNCTION
-
- FUNCTION EvalAssocConf(a, b, z)
- INCLUDE 'STDHDR.FOR'
- REAL result, a, b, z, temp1, temp2,Calc1, Calc2, Calc3
- REAL PiCalc, Kum1, Kum2, Exp1, Subtotal, Gam1, Gam2
- INTEGER ErrorFlag
- Temp1 = 0
- Temp2 = 0
- PiCalc = pi / SIN(pi * b)
- Kum1 = KumrConf(a, b, z)
- Gam1 = Gamma(1.0 + a - b, ErrorFlag) * Gamma(b, ErrorFlag)
- Temp1 = Gamma(1.0 + a - b, ErrorFlag)
- Temp2 = Gamma(b, ErrorFlag)
- Gam1 = Gamma(1.0 + a - b, ErrorFlag) * Gamma(b, ErrorFlag)
- Exp1 = CalcPower(z, 1.0 - b)
- Kum2 = KumrConf(1.0 + a - b, 2.0 - b, z)
- Gam2 = Gamma(a, ErrorFlag) * Gamma(2.0 - b, ErrorFlag)
- Temp1 = Gamma(a, ErrorFlag)
- Temp2 = Gamma(2.0 - b, ErrorFlag)
- Calc1 = Kum1 / Gam1
- Calc2 = Exp1 * Kum2
- Calc3 = Calc2 / Gam2
- Subtotal = Calc1 - Calc3
- result = PiCalc * Subtotal
- EvalAssocConf = result
- END !FUNCTION
-
-
- FUNCTION AssocConf(a, b, z)
- INCLUDE 'STDHDR.FOR'
- REAL a, b, z, bu,bl
- result = 0.0
- IF ( ABS(z) .LT. 1E-10) THEN
- result = 0.0
- ELSE
- IF ( ABS(b - INT(b)) .LT. 0.0001 .OR.
- + ABS(b - NINT(b)) .LT. 0.0001) THEN
- bu = b + 0.0005
- bl = b - 0.0005
- result = EvalAssocConf(a, bl , z) +
- + EvalAssocConf(a, bu, z) / 2.0
- ELSE
- result = EvalAssocConf(a, b , z)
-
- END IF
- END IF
- AssocConf = result
- END !FUNCTION
-
- FUNCTION Bessel(order, x, ErrorFlag)
- INCLUDE 'STDHDR.FOR'
- REAL result,order, x, d, f, j, sum, NearZero, Tolerance
- INTEGER c, ErrorFlag
- PARAMETER (nearzero = 1E-20)
- PARAMETER (Tolerance = 1E-10)
- result = 0.0
- IF ( order .LT. 0) THEN
- ErrorFlag = 3
- ELSE
- IF ( ((x .LT. 0) .AND. (ABS(x - NINT(x)) .LT. nearzero))) THEN
- ErrorFlag = 2
- ELSE
- IF ( ABS(x) .LT. nearzero) THEN
- IF ( ABS(order) .LT. nearzero) THEN
- result = 1
- ELSE
- result = 0
- END IF
- ELSE
- IF ( x .LE. 15.0) THEN
- f = 1.0 / Gamma(REAL(order) + 1.0, ErrorFlag)
- j = -((x ** 2) / 4.0)
- d = order + 1
- sum = f
- c = 1
- DO WHILE (ABS(f) .GE. Tolerance )
- f = f * j / (REAL(c) * d)
- d = d + 1
- c = c + 1
- sum = sum + f
- END DO
- IF ( x .GT. 0) THEN
- result = sum * EXP(order * LOG(x / 2.0))
- ELSE
- result = (1.0 - 2.0 * (MOD(INT(order), 2))) *
- + sum * EXP(order * LOG(ABS(x / 2.0)))
- END IF
- ELSE
- result = SQRT(2.0 / (pi * x)) *
- + COS(x - pi / 4.0 - order * pi * 2.0)
- END IF
- END IF
- END IF
- END IF
- Bessel = result
- END !FUNCTION Bessel
-
- FUNCTION Beta(z, w)
- REAL z, w, b
- b = LogGamma(z) + LogGamma(w) - LogGamma(z + w)
- Beta = EXP(b)
- END !FUNCTION
-
- !!!------------------------------------------------------------------
- !!! Calculated a polynomial
- !!!------------------------------------------------------------------
- FUNCTION CalcPoly(XIn, CoefVector, order)
- REAL CoefVector(*), xin
- INTEGER order, i
-
- YOut = CoefVector(order)
- DO i = order - 1, 0, -1
- YOut = YOut * XIn + CoefVector(i)
- END DO
- CalcPoly = YOut
- END !FUNCTION
-
- FUNCTION CalcPower(x, a)
- REAL x, a
- CalcPower = EXP(a * LOG(x))
- END !FUNCTION
-
-
- FUNCTION Combin (n, m)
- !!! Combinatorial bracket n-over-m, m an integer
- REAL n, nt, result
- INTEGER i,m,im
- result = 1
- nt = n
- DO I=1,M
- im = M-I+1
- result = result * (nt/ REAL(im))
- nt = nt - 1.0
- END DO
- Combin = result
- END !FUNCTION Combin
-
- FUNCTION Coshy (z)
- REAL z
- CoshY = (EXP(z) + EXP(-z)) / 2.0
- END !FUNCTION Cosh
-
- SUBROUTINE DisplayErrorMessage(ErrorFlag)
- INTEGER ErrorFlag
- SELECT CASE (ErrorFlag)
-
- CASE (0)
- WRITE (*,*) 'No Errors Found.'
- CASE (1)
- WRITE (*,*) 'ERROR!! Argument must be a nonzero number'
- CASE (2)
- WRITE (*,*) 'ERROR!! Argument must not be a negative'
- CASE (3)
- WRITE (*,*)
- + 'ERROR!! Order of polynomial must be greater than zero'
- CASE (4)
- WRITE (*,*) 'ERROR!! Argument must be greater than -1'
- END SELECT
- END !SUB
-
- FUNCTION ErrFunc(x, ErrorFlag)
- INCLUDE 'STDHDR.FOR'
- REAL x, result, p, temp
- INTEGER ErrorFlag
- REAL PolyCoef(0 : 15), NearZero
- PARAMETER (nearzero = 1E-20)
- result = 0.0
- IF ( ABS(x) .LT. nearzero) THEN
- ErrorFlag = 1
- ELSE
- IF ( x .GT. 4.0) THEN
- result = 1.0
- ELSE
- IF ( x .GT. 1.5) THEN
- result = ErrFuncIter(x)
- ELSE
- p = x * x
- PolyCoef(0) = 0.0
- PolyCoef(0) = 0.0
- PolyCoef(1) = 0.6666666999999999
- PolyCoef(2) = 0.2666667
- PolyCoef(3) = 0.07619048
- PolyCoef(4) = 0.01693122
- PolyCoef(5) = 3.078403E-03
- PolyCoef(6) = 4.736005E-04
- PolyCoef(7) = 6.314673E-05
- PolyCoef(8) = 7.429027E-06
- PolyCoef(9) = 7.820028E-07
- PolyCoef(10) = 7.447646E-08
- PolyCoef(11) = 6.476214E-09
- temp = x + x * CalcPoly(p, PolyCoef, 11)
- result = 2.0 * temp * EXP(-p) / SQRT(pi)
- END IF
- END IF
- END IF
- ErrFunc = result
- END !FUNCTION ErrFunc
-
-
- FUNCTION ErrFuncComp(x, ErrorFlag)
- REAL x
- INTEGER ErrorFlag
- ErrFuncComp = 1 - ErrFunc(x, ErrorFlag)
- END !FUNCTION
-
-
-
- FUNCTION ErrFuncI(x, y)
- !!! The imaginary part of complex error function, z = x + iy
- INCLUDE 'STDHDR.FOR'
- REAL x, y, jy,x2, xy2,sum, part, g
- INTEGER j
- x2 = 2.0 * x
- xy2 = x2 * y
- sum = 0.0
- IF ( ABS(x) .LT. 0.0000001) THEN
- part = y / pi
- ELSE
- part = EXP(-(x ** 2)) / (pi * x2) * SIN(xy2)
- END IF
- sum = sum + part
- part = 0
- DO j = 1, 20
- jy = j * y
- g = x2 * Cosh(jy) * SIN(xy2) + j * Sinh(jy) * COS(xy2)
- part = part * EXP(-((j ** 2) / 4.0)) / ((j**2) + (x2**2)) * g
- END DO
- sum = sum + part * EXP(-(x ** 2)) * 2 / pi
- ErrFuncI = sum
- END !FUNCTION ErrFunci
-
-
-
- FUNCTION ErrFuncIter(x)
- INCLUDE 'STDHDR.FOR'
- REAL x, a, s1, t, result, Tolerance
- INTEGER i
- PARAMETER (Tolerance = 1E-10)
- result = 0.0
- a = x ** 2
- s1 = x
- t = x
- i = 1
- DO WHILE (t .GT. (Tolerance * s1))
- s2 = s1
- t = 2.0 * t * (a / (1.0 + 2.0 * i))
- s1 = t + s2
- i = i + 1
- END DO
- result = 2.0 * s1 * (EXP(-a)) / SQRT(pi)
- ErrFuncIter = result
- END !FUNCTION ErrFuncIter
-
-
-
- FUNCTION ErrFuncR(x, y)
- INCLUDE 'STDHDR.FOR'
- !!! The real part of complex error function, z = x + iy
- REAL x, y, x2, xy2, sum, part, jy, f
- INTEGER ErrorFlag
- sum = 0.0
- x2 = 2.0 * x
- xy2 = x2 * y
- IF ( ABS(x) .GT. 0.0) THEN
- part = EXP(-(x ** 2))/x * (1.0 / (2.0*pi)) * (1.0- COS(xy2))
- ELSE
- part = 0.0
- END IF
- sum = ErrFunc(x, ErrorFlag)
- sum = sum + part
- part = 0.0
- DO j = 1, 10
- jy = j * y
- f = x2 - x2 * COS(xy2) * Cosh(jy) + j * Sinh(jy) * SIN(xy2)
- part = part + EXP(-(j ** 2/4.0))/(j ** 2 + 4 * x ** 2) * f
- END DO
- sum = sum + part * 2.0 / pi * EXP(-(x ** 2))
- ErrFuncR = sum
- END !FUNCTION ErrFuncr
-
- FUNCTION EvalGamma(x)
- INCLUDE 'STDHDR.FOR'
- REAL result, x, y, f,NearZero
- PARAMETER (nearzero = 1E-20)
-
- result = 0.0
- y = x
- f = 1
- DO WHILE (y .GT. 1)
- y = y - 1
- f = f * y
- END DO
- IF ( y .EQ. 1) THEN
- result = f
- ELSE
- IF ( y .GT. 0.5) THEN
- result = (f * pi) / (SIN(pi * y) * StandGamma(1.0 - y))
- ELSE
- result = f * StandGamma(y)
- END IF
- END IF
- EvalGamma = result
- END !FUNCTION EvalGamma
-
- FUNCTION Gamma(x, ErrorFlag)
- INCLUDE 'STDHDR.FOR'
- REAL result, x, NearZero
- INTEGER ErrorFlag
- PARAMETER (nearzero = 1E-20)
- result = 0.0
- IF (ABS(x) .LT. nearzero) THEN
- ErrorFlag = 1
- ELSE
- IF ((x .LT. 0) .AND. (ABS(x - NINT(x)) .LT. nearzero)) THEN
- ErrorFlag = 2
- ELSE
- IF ( x .EQ. 1) THEN
- result = 1
- ELSE
- IF ( x .LT. 0.0) THEN
- result = -(pi / (x * SIN(pi * x) * EvalGamma(-x)))
- ELSE
- result = EvalGamma(x)
- END IF
- END IF
- END IF
- END IF
- Gamma = result
- END !FUNCTION Gamma
-
- FUNCTION GaussHyper(a, b, c, z)
- !!! Gauss hypergeometric function
- REAL a,b,c,z,g,sum, Tolerance
- INTEGER j
- PARAMETER (Tolerance = 1E-10)
- g = 1
- j = 1
- sum = 0 .0
- DO WHILE (j .LE. 80 .AND. ABS(G) .GE. Tolerance)
- sum = sum + g
- g = g * a * b * z / (REAL(j) * c)
- j = j + 1
- a = a + 1
- b = b + 1
- c = c + 1
- END DO
- GaussHyper = sum
- END !FUNCTION GaussHyper
-
- FUNCTION Hermite(n, x, ErrorFlag)
- !!! Hermite Polynomial of Order n
- REAL result, X
- IF ( n .LT. 0) THEN
- ErrorFlag = 3
- ELSE
- SELECT CASE (n)
- CASE (0)
- result = 1.0
- CASE (1)
- result = 2.0 * x
- CASE (2)
- result = 4.0 * (x ** 2) - 2.0
- CASE (3)
- result = 8.0 * CalcPower(x, 3.0) - (12.0 * x)
- CASE (4)
- result = 16.0 * CalcPower(x, 4.0) -
- + 48.0 * (x ** 2) + 12.0
- CASE (5)
- result = 32.0 * CalcPower(x, 5.0) - 160.0 *
- + CalcPower(x, 3.0) + 120.0 * x
- CASE DEFAULT
- result = x * EXP(n * LOG(2)) *
- + AssocConf(0.5 - REAL(n) / 2.0, 3.0 / 2.0, (x ** 2))
- END SELECT
- END IF
- Hermite = result
- END !FUNCTION Hermite
-
- !!!---------------------------------------
- !!! I N C O M P L E T E B E T A
- !!!---------------------------------------
- FUNCTION IBeta(a, b, x)
- REAL a,b,x,am,bm,az,qab,qap,qam,bz,m,em,tem,d,ap
- REAL bpp, aold, Tolerance
- PARAMETER (Tolerance = 1E-10)
- am = 1.0
- bm = 1.0
- az = 1.0
- aold = 0.0
- qab = a + b
- qap = a + 1.0
- qam = a - 1.0
- bz = 1.0 - qab * x / qap
- m = 1.0
- DO WHILE (ABS(az - aold) .GE. (Tolerance * ABS(az)))
- em = m
- tem = 2.0 * em
- d = em * (b - m) * x / ((qam + tem) * (a + tem))
- ap = az + d * am
- bp = bz + d * bm
- d = -(a + em) * (qab + em) * x / ((a + tem) * (qap + tem))
- app = ap + d * az
- bpp = bp + d * bz
- aold = az
- am = ap / bpp
- bm = bp / bpp
- az = app / bpp
- bz = 1.0
- m = m + 1.0
- END DO
- IBeta = az
- END !FUNCTIONIBeta
-
-
-
- FUNCTION IncompleteBeta(a, b, x)
- REAL a,b,x,bt,result, NearZero
- PARAMETER (nearzero = 1E-20)
- result = 0.0
- IF (x .LT. 0.0 .OR. x .GT. 1.0) THEN
- WRITE (*,*) 'Improper Value passed IncompleteBeta'
- ELSE
- IF ((ABS(x) .LT. nearzero) .OR. ((1.0-x) .LT. nearzero)) THEN
- bt = 0.0
- ELSE
- bt = LogGamma(a + b) + a*LOG(x) +
- + b * LOG(1.0 - x) - LogGamma(a) - LogGamma(b)
- END IF
- bt = EXP(bt)
- IF ( x .LT. (a + 1.0) / (a + b + 2.0)) THEN
- result = bt * (IBeta(a, b, x) / a)
- ELSE
- result = 1 - bt * IBeta(b, a, 1.0 - x) / b
- END IF
- IncompleteBeta = result
- END IF
- END !FUNCTION
-
-
-
- FUNCTION IncompleteGamma(a, x)
- REAL a, x, result, glog, s1, dif, ir, Tolerance
- PARAMETER (Tolerance = 1E-10)
- result = 0.0
- IF (a .LT. 0.0 .OR. x .LE. 0.0) THEN
- result = 0.0
- ELSE
- gLOG = LogGamma(a)
- ir = a
- s1 = 1.0 / a
- dif = s1
- DO WHILE (ABS(dif) .GT. ABS(s1) * Tolerance)
- ir = ir + 1.0
- dif = dif * x / ir
- s1 = s1 + dif
- END DO
- result = s1 * EXP(-x + a * LOG(x) - gLOG)
- END IF
- IncompleteGamma = result
- END !FUNCTION
-
- FUNCTION IncompleteGammaComp(a, x)
- REAL a,x
- IncompleteGammaComp = 1.0 - IncompleteGamma(a, x)
- END !FUNCTION
-
- FUNCTION Jacobi(n, a, b, x, ErrorFlag)
- REAL result,a,b,x
- INTEGER n, ErrorFlag
- !!! Jacobi polynomial of order n, superscripts (a,b)
- result = 0.0
- IF ( n .LT. 0) THEN
- ErrorFlag = 3
- ELSE
- IF ((a .LE. -1.0) .OR. (b .LE. -1.0)) THEN
- ErrorFlag = 4
- ELSE
- result = Combin(REAL(n) + a, n) *
- + GaussHyper(-REAL(n), n+a+b+1.0, a+1.0, (1.0-x)/2.0)
- END IF
- END IF
- Jacobi = result
- END !FUNCTION Jacobi
-
- FUNCTION KumrConf(a, b, z)
- REAL a,b,z, sum, g, Tolerance
- INTEGER j
- PARAMETER (Tolerance = 1E-10)
- !!! Kummer (confluent) hypergeometric function
- sum = 0.0
- g = 1.0
- j = 1
- DO WHILE ((j .LT. 80) .AND. (ABS(g) .LT. Tolerance))
- sum = sum + g
- g = g * a * z / (b * j)
- j = j + 1
- a = a + 1.0
- b = b + 1.0
- END DO
-
- KumrConf = sum
- END !FUNCTION KumrConf
-
- FUNCTION Laguerre(n, a, x, ErrorFlag)
- !!! Laguerre function or order n, superscript a
- REAL result,a, x,num
- INTEGER n, ErrorFlag
- IF ( n .LT. 0) THEN
- ErrorFlag = 3
- ELSE
- IF ( a .LE. -1) THEN
- ErrorFlag = 4
- ELSE
- IF ( (n/2) .EQ. 0) THEN
- num = 1
- ELSE
- num = -1
- END IF
- SELECT CASE (n)
- CASE (0)
- result = 1
- CASE (1)
- result = -x + 1
- CASE (2)
- result = 0.5 * ((x ** 2) - 4 * x + 2)
- CASE (3)
- result = 1.0 / 6.0 *
- + (-CalcPower(x, 3.0) + 9.0 * (x ** 2) - 18.0 * x + 6)
- CASE (4)
- result = 1.0 / 24.0 * (CalcPower(x, 4.0) - 16 *
- + CalcPower(x, 3.0) + 72.0 * (x ** 2) - 96.0*x + 24.0)
- CASE DEFAULT
- result = num * AssocConf(-REAL(n), a + 1, x) /
- + Gamma(REAL(n) + 1.0, ErrorFlag)
- END SELECT
- END IF
- END IF
- Laguerre = result
- END !FUNCTION Laguerre
-
- FUNCTION Legend(n, x, ErrorFlag)
- REAL x
- INTEGER result,n, ErrorFlag
- !!! Legendre Polynomial of Order n
-
- IF ( n .LT. 0) THEN
- ErrorFlag = 3
- ELSE
- SELECT CASE (n)
- CASE (0)
- result = 1.0
- CASE (1)
- result = x
- CASE (2)
- result = 0.5 * (3.0 * x * x - 1.0)
- CASE (3)
- result = 0.5 * (5.0 * CalcPower(x, 3.0) - (3.0 * x))
- CASE (4)
- result = 1.0 / 8.0 * (35.0 * CalcPower(x, 4.0) -
- + 30.0 * (4.0) + 3.0)
- CASE (5)
- result = 1.0 / 8.0 * (63.0 * CalcPower(x, 5.0) -
- + 70.0 * CalcPower(x, 3.0) + 15.0 * x)
- CASE (6)
- result = 1.0 / 16.0 * (231.0 * CalcPower(x, 6.0) -
- + 315.0 * CalcPower(x, 4.0) + 105.0 * 4.0 - 5.0)
- CASE DEFAULT
- result = GaussHyper(-REAL(n), REAL(n)+1.0,1.0,(1.0-x)/2.0)
- END SELECT
- END IF
- Legend = result
- END !FUNCTION Legend
-
-
-
- FUNCTION LogGamma(x)
- REAL x,stp,xx,temp,ser,coef(0 : 15)
- INTEGER i
- coef(0) = 76.18009173
- coef(1) = -86.50532033
- coef(2) = 24.01409822
- coef(3) = -1.231739516
- coef(4) = 0.00120858003
- coef(5) = -5.36382E-06
- stp = 2.50662827565
- xx = x - 1.0
- temp = xx + 5.5
- temp = (xx + 0.5) * LOG(temp) - temp
- ser = 1.0
- DO i = 0, 5
- xx = xx + 1.0
- ser = ser + coef(i) / xx
- END DO
- LogGamma = temp + LOG(stp * ser)
- END !FUNCTION
-
- FUNCTION ModBesselI(n, x, ErrorFlag)
- !!! Modified Bessel function i of order n
- REAL result, n, x, NearZero
- INTEGER ErrorFlag
- PARAMETER (nearzero = 1E-20)
- result = 0.0
- IF ( ABS(x) .LT. nearzero) THEN
- IF ( ABS(n) .LT. nearzero) THEN
- result = 1.0
- ELSE
- result = 0.0
- END IF
- ELSE
- result = EXP(-x) * EXP(n * LOG(x / 2.0)) *
- + KumrConf(n+0.5, 2.0*n+1.0, 2*x)/Gamma(n+1, ErrorFlag)
- END IF
- ModBesselI = result
- END !FUNCTION ModBesselI
-
- FUNCTION ModBesselK(n, x)
- INCLUDE 'STDHDR.FOR'
- !!! Modified bessel function k of order n
- REAL result,n, x, NearZero
- PARAMETER (nearzero = 1E-20)
-
- IF ( ABS(x) .LT. nearzero) THEN
- IF ( ABS(n) .LT. nearzero) THEN
- result = 1.0
- ELSE
- result = 0.0
- END IF
- ELSE
- result = EXP(n * LOG(2 * x)) * EXP(-x) * SQRT(pi) *
- + AssocConf(n + 0.5, 2.0 * n + 1.0, 2.0 * x)
- END IF
- ModBesselK = result
- END !FUNCTION ModBesselK
-
- FUNCTION Sech(z)
- REAL z
- Sech = 1.0 / Cosh(z)
- END !FUNCTION Sech
-
- FUNCTION SinhY(z)
- REAL z
- SinhY = (EXP(z) - EXP(-z)) / 2.0
- END !FUNCTION Sinh
-
- FUNCTION StandGamma(y)
- REAL BigArry(0 : 20), y, f, temp
-
- BigArry(0) = 0.5772156649015329
- BigArry(1) = -.6558780715202538
- BigArry(2) = -0.0420026350340952
- BigArry(3) = 0.1665386113822915
- BigArry(4) = -0.0421977345555443
- BigArry(5) = -9.621971527877001e-03
- BigArry(6) = 0.007218943246663
- BigArry(7) = -0.0011651675918591
- BigArry(8) = -0.0002152416741149
- BigArry(9) = 0.0001280502823882
- BigArry(10) = -0.0000201348547807
- BigArry(11) = -0.0000012504934821
- BigArry(12) = 0.000001133027232
- BigArry(13) = -0.0000002056338417
- BigArry(14) = 0.000000006116095
- BigArry(15) = 0.0000000050020075
- BigArry(16) = -0.0000000011812746
- BigArry(17) = 0.0000000001043427
- BigArry(18) = 7.782299999999999D-12
- BigArry(19) = -0.0000000000036968
- BigArry(20) = 0.000000000000051
- f = y
- temp = f
- DO i = 0, 20
- f = f * y
- temp = temp + f * BigArry(i)
- END DO
- StandGamma = 1.0 / temp
- END !FUNCTION StandGamma
-
- FUNCTION Tangent(x)
- REAL x
- Tangent = SIN(x) / COS(x)
- END !FUNCTION Tan
-
- FUNCTION Tcheb(n, x, ErrorFlag)
- !!! Tchebyshev polynomial of order n
- INTEGER n, ErrorFlag
- REAL x, result
- IF ( n .LT. 0) THEN
- ErrorFlag = 3
- ELSE
- SELECT CASE (n)
- CASE (0)
- result = 1.0
- CASE (1)
- result = x
- CASE (2)
- result = 2.0 * (x ** 2) - 1.0
- CASE (3 )
- result = 4.0 * CalcPower(x, 3.0) - 3 * x
- CASE (4)
- result = 8.0 * CalcPower(x, 4.0) - 8.0 * (x ** 2) + 1.0
- CASE (5)
- result = 16.0 * CalcPower(x, 5.0) - 20.0 *
- + CalcPower(x, 3.0) + 5.0 * x
- CASE (6)
- result = 32.0 * CalcPower(x, 6.0) - 48 *
- + CalcPower(x, 4.0) + 18 * (x ** 2) - 1.0
- CASE DEFAULT
- result = GaussHyper(-REAL(n), REAL(n), 0.5, (1.0 - x) / 2.0)
- END SELECT
- END IF
- Tcheb = result
- END !FUNCTION Tcheb
-