home *** CD-ROM | disk | FTP | other *** search
- PROGRAM CalcStats
-
- INCLUDE 'STDHDR.FOR'
- REAL mat1(0: maxr, 0: maxc),mat2(0: maxr, 0: maxc)
- REAL mat3(0: maxr, 0: maxc)
- REAL eigenvalues(0: maxc)
- REAL a(0:maxr,0:maxc), ev(0:maxr, 0:maxc)
- CHARACTER message * 80
- INTEGER n,count
- LOGICAL success
-
- ! matmath demo main
-
- mat1(0, 0) = 13.0
- mat1(0, 1) = -8.0
- mat1(0, 2) = -3.0
- mat1(1, 0) = -8.0
- mat1(1, 1) = 10.0
- mat1(1, 2) = -1.0
- mat1(2, 0) = -3.0
- mat1(2, 1) = -1.0
- mat1(2, 2) = 11.0
-
- mat2(0, 0) = 1.0
- mat2(0, 1) = 5.0
- mat2(0, 2) = 1.0
- mat2(1, 0) = 3.0
- mat2(1, 1) = 6.0
- mat2(1, 2) = 3.0
- mat2(2, 0) = 0.0
- mat2(2, 1) = 1.0
- mat2(2, 2) = -9.0
-
- CALL MatProd(mat1, mat2, 3, 3, 3, mat3)
- message = 'Matrix product mat1 x mat2 = '
- CALL MatPrint(mat3, 3, 3, message)
- WRITE (*,*) 'Press carriage return to advance to next procedure'
- READ (*,*)
-
- vm = 11
- CALL MatScalarProd(mat1, vm, 3, 3, mat3)
- message = 'Matrix scalar product mat1 x 11.000 = '
- CALL MatPrint(mat3, 3, 3, message)
- WRITE(*,*) 'Press carriage return to advance to next procedure'
- READ (*,*)
-
-
- CALL MatAdd(mat1, mat2, 3, 3, mat3)
- message = 'Matrix add mat1 + mat 2 = '
- CALL MatPrint(mat3, 3, 3, message)
- WRITE(*,*) 'Press carriage return to advance to next procedure'
- READ (*,*)
-
-
- CALL MatTranspose(mat1, 3, 3, mat3)
- message = 'Matrix transpose of mat1 = '
- CALL MatPrint(mat3, 3, 3, message)
- WRITE(*,*) 'Press carriage return to advance to next procedure'
- READ (*,*)
-
-
- CALL MatDeter(mat1, 3, det)
- WRITE (*,5) 'Determinant of matrix mat1 = ', det
- 5 FORMAT (A28, F7.2)
- WRITE(*,*)
- WRITE(*,*) 'Press carriage return to advance to next procedure'
- READ (*,*)
-
- CALL MatInvert(mat1, 3, det, mat3)
- message = 'Inverse of matrix mat1 = '
- CALL MatPrint(mat3, 3, 3, message)
- WRITE(*,*)'Press carriage return to begin Jacobi Demo '
- READ (*,*)
-
- n = 4
-
- a(0, 0) = 5.0
- a(0, 1) = 4.0
- a(0, 2) = 1.0
- a(0, 3) = 1.0
- a(1, 0) = 4.0
- a(1, 1) = 5.0
- a(1, 2) = 1.0
- a(1, 3) = 1.0
- a(2, 0) = 1.0
- a(2, 1) = 1.0
- a(2, 2) = 4.0
- a(2, 3) = 2.0
- a(3, 0) = 1.0
- a(3, 1) = 1.0
- a(3, 2) = 2.0
- a(3, 3) = 4.0
-
-
- count = 10
- CALL CyclicJacobi(a, n, eigenvalues, ev, count, success)
- CALL NormalizeEigenVectors(ev, n)
- WRITE (*,*) 'Success ', success
- DO i = 0, n - 1
- WRITE(*,7) 'Eigenvalue ', i, ' = ', eigenvalues(i)
- WRITE(*,8) 'Eigenvector ', i, ' = '
- DO j = 0, n - 1
- WRITE(* ,10) ev(j, i)
- END DO
- WRITE (*,*)
- END DO
-
- WRITE(*,*) 'count ', count
- READ (*,*)
- 7 FORMAT (A12, I2, A3, F7.2)
- 8 FORMAT (1X, A12, I2, A3 \)
- 10 FORMAT (F11.6\)
-
-
-
- END