home *** CD-ROM | disk | FTP | other *** search
-
- Begin["System`"]
- Unprotect[InverseFunction]
-
- Begin["`Private`"]
-
- Format[InverseFunction[f_]] := SequenceForm[f^"(-1)"]
- Format[InverseFunction[f_,1]] := SequenceForm[f^"(-1)"]
- Format[InverseFunction[f_,1,1]] := SequenceForm[f^"(-1)"]
-
- InverseFunction[Sin]=ArcSin
- InverseFunction[Cos]=ArcCos
- InverseFunction[Tan]=ArcTan
- InverseFunction[Csc]=ArcCsc
- InverseFunction[Sec]=ArcSec
- InverseFunction[Cot]=ArcCot
- InverseFunction[ArcSin]=Sin
- InverseFunction[ArcCos]=Cos
- InverseFunction[ArcTan]=Tan
- InverseFunction[ArcCsc]=Csc
- InverseFunction[ArcSec]=Sec
- InverseFunction[ArcCot]=Cot
- InverseFunction[Sinh]=ArcSinh
- InverseFunction[Cosh]=ArcCosh
- InverseFunction[Tanh]=ArcTanh
- InverseFunction[Csch]=ArcCsch
- InverseFunction[Sech]=ArcSech
- InverseFunction[Coth]=ArcCoth
- InverseFunction[ArcSinh]=Sinh
- InverseFunction[ArcCosh]=Cosh
- InverseFunction[ArcTanh]=Tanh
- InverseFunction[ArcCsch]=Csch
- InverseFunction[ArcSech]=Sech
- InverseFunction[ArcCoth]=Coth
- InverseFunction[Log]=Exp
- InverseFunction[Exp]=Log
- InverseFunction[Power,1,2]=(#1^(1/#2))&
- InverseFunction[Power,2,2]=Log
-
- InverseFunction[JacobiSN,1,2]=InverseJacobiSN
- InverseFunction[JacobiSD,1,2]=InverseJacobiSD
- InverseFunction[JacobiSC,1,2]=InverseJacobiSC
- InverseFunction[JacobiCS,1,2]=InverseJacobiCS
- InverseFunction[JacobiCN,1,2]=InverseJacobiCN
- InverseFunction[JacobiCD,1,2]=InverseJacobiCD
- InverseFunction[JacobiNS,1,2]=InverseJacobiNS
- InverseFunction[JacobiNC,1,2]=InverseJacobiNC
- InverseFunction[JacobiDS,1,2]=InverseJacobiDS
- InverseFunction[JacobiDC,1,2]=InverseJacobiDC
-
- InverseFunction[Identity]=Identity
- f_[InverseFunction[f_][x___]] ^= x
- InverseFunction[f_][f_[x___]] := x
- f_[InverseFunction[f_,1,1][x___]] ^= x
- InverseFunction[f_,1,1][f_[x___]] := x
- Literal[InverseFunction[Composition[f___]]] := Composition@@
- (InverseFunction/@Reverse[{f}])
-
- Protect[InverseFunction]
-
- End[]
- End[]
-
- Null
-