home *** CD-ROM | disk | FTP | other *** search
- .MCD 20000 0
- .CMD PLOTFORMAT logs=0,0 subdivs=1,1 size=5,15 type=l
- .CMD FORMAT rd=d ct=10 im=i et=8 zt=15 pr=3 mass length time charge
- .CMD SET ORIGIN 0
- .CMD SET TOL 0.001000
- .CMD MARGIN 0
- .CMD LINELENGTH 78
- .CMD SET PRNCOLWIDTH 8
- .CMD SET PRNPRECISION 4
- .TXT 1 0 1 36
- a1,35,33,34
- Calculate Net Present Value (NPV)
- .TXT 2 0 2 66
- a2,65,65,123
- Examine net present value of initial investment I resulting in
- cash flows C over time. Use discount rate denoted by int.
- .EQN 3 10 1 11
- I:5000
- .TXT 0 16 1 24
- a1,24,22,23
- ... initial investment
- .EQN 1 -16 1 13
- int:12*%
- .TXT 0 16 1 31
- a1,30,28,29
- ... interest rate per period
- .EQN 3 -17 10 13
- C:({10,1}÷500÷1000÷2000÷2000÷3000÷4000÷3000÷2000÷1200÷500)
- .TXT 5 16 1 39
- a1,38,53,37
- ... paybacks over term of investment
- .EQN 6 -25 1 16
- N:length(C)
- .EQN 0 19 1 10
- N=?
- .EQN 0 10 1 12
- j:1;N
- .TXT 3 -29 1 15
- a1,14,12,13
- NPV formula:
- .EQN 2 10 4 62
- npv(init,pmts,i_rate):-init+j$pmts[(j-1)*(1+i_rate)^-j
- .EQN 5 0 1 21
- NPV:npv(I,C,int)
- .EQN 1 0 1 18
- NPV=?
- .TXT 0 30 1 23
- a1,23,21,22
- ... net present value
- .TXT 2 -40 1 47
- a1,46,44,45
- Plot present value of discounted cash flows.
- .EQN 2 12 2 11
- PV[0:-I
- .EQN 2 0 3 33
- PV[j:PV[(j-1)+C[(j-1)*(1+int)^-j
- .EQN 1 37 1 13
- j1:0;N
- .EQN 3 -42 16 54
- NPV&-I&PV[j1,0{1,10,15,45,l}@last(C)&0&j1
- .EQN 0 54 1 18
- NPV=?
- .EQN 7 0 1 3
- 0
- .EQN 7 0 1 14
- -I=?
- .TXT 3 -61 1 36
- a1,35,33,34
- Now find internal rate of return.
- .EQN 2 12 1 20
- Rate_guess:10*%
- .EQN 2 0 1 40
- IRR(init,C,p):root(npv(init,C,p),p)
- .EQN 2 0 1 19
- int:Rate_guess
- .EQN 2 0 1 23
- IRR(I,C,int)={19073}?%
-