home *** CD-ROM | disk | FTP | other *** search
- .MCD 20000 0
- .CMD PLOTFORMAT logs=0,0 subdivs=1,1 size=5,15 type=l
- .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge
- .CMD SET ORIGIN 0
- .CMD SET TOL 0.001000
- .CMD MARGIN 0
- .CMD LINELENGTH 78
- .CMD SET PRNCOLWIDTH 8
- .CMD SET PRNPRECISION 4
- .TXT 1 0 1 30
- a1,29,27,28
- SELF-SQUARED FRACTAL CURVES
- .TXT 2 0 3 76
- a3,75,73,170
- For further information on these curves, see Mandelbrot, "The Fractal
- Geometry of Nature" (chapter 19), and Peitgen & Richter, "The Beauty of
- Fractals" (chapter 2)
- .TXT 4 0 3 77
- a3,76,74,202
- Self squared curves are curves in the complex plane which remain invariant
- under quadratic transformation. We examine the problem of iterates of
- the functions f(x) = x^2 + µ, or f(x) = ▐ * x * (1-x).
- .TXT 4 0 1 67
- a1,66,64,65
- The following examples are computed by direct inverse iteration.
- .TXT 2 0 2 75
- a2,74,72,117
- First define a function that allows a random choice between two possible
- inverses for a quadratic function. To wit:
- .EQN 3 1 1 31
- pick(x)~2*floor(rnd(2))-1
- .TXT 0 35 1 20
- a1,19,17,18
- returns +1 or -1.
- .TXT 3 -36 1 35
- a1,35,33,34
- Calculate based on this function:
- .EQN 0 43 2 17
- f(x):x^2+µ
- .TXT 2 -43 1 71
- a1,70,68,69
- Now pick a value for µ. (Change the value of µ to see other curves.)
- .EQN 2 1 1 20
- µ:0.31+0.4*1i
- .EQN 3 0 1 17
- transient:10
- .TXT 0 24 2 43
- a2,42,40,69
- (detail of curve is directly
- proportional to number of iterations)
- .EQN 1 -24 1 19
- iterations:250
- .EQN 2 0 1 33
- i:1;transient+iterations
- .EQN 2 0 2 9
- x[1:0
- .EQN 3 0 3 25
- x[(i+1):pick(1)*\(x[i-µ)
- .EQN 5 -1 1 29
- i:transient;iterations
- .EQN 0 34 1 15
- xscale:1.2
- .EQN 1 0 1 16
- yscale:0.75
- .EQN 2 -34 17 50
- yscale/|µ&-yscale/|µ&Im(x[i){1,1,15,40,d}@xscale&-xscale&Re(x[i)
- .TXT 19 0 1 34
- a1,33,36,32
- Now an example with the ▐ form:
- .EQN 0 41 1 22
- f(x):▐*x*(1-x)
- .EQN 2 -40 1 8
- ▐:3
- .EQN 2 0 1 35
- i:1;(transient+iterations)
- .EQN 2 0 2 9
- x[i:0
- .EQN 3 0 7 31
- x[(i+1):(1+pick(1)*\(1-(4*x[i)/▐))/2
- .EQN 9 0 1 29
- i:transient;iterations
- .EQN 0 39 1 15
- xscale:1.1
- .EQN 1 0 1 15
- yscale:1.0
- .EQN 2 -39 17 49
- &&Im(x[i){1,1,15,40,d}@&&Re(x[i)
- .TXT 30 28 2 26
- a2,25,49,41
- Based on a document by
- Seth Finkelstein
-