home *** CD-ROM | disk | FTP | other *** search
- .MCD 20000 0
- .CMD PLOTFORMAT logs=0,0 subdivs=1,1 size=5,15 type=l
- .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge
- .CMD SET ORIGIN 0
- .CMD SET TOL 0.001000
- .CMD MARGIN 0
- .CMD LINELENGTH 78
- .CMD SET PRNCOLWIDTH 8
- .CMD SET PRNPRECISION 4
- .TXT 0 1 4 27
- a4,26,24,65
- SIMULATE DIFFUSION
- Based on the diffusion
- equation ...
- .EQN 0 34 5 25
- ?f(x,t):d^2/dx^2*f(x,t)
- .TXT 6 -35 1 32003
- b1,32002,78,66
- Approximate this differential equation with a difference equation
- .EQN 2 1 1 12
- t:0;9
- .TXT 0 18 1 34
- a1,33,59,32
- ... ranges over time increments
- .EQN 1 -18 1 13
- x:1;49
- .TXT 0 18 1 35
- a1,34,60,33
- ... ranges over space increments
- .EQN 1 -18 1 10
- α:.25
- .TXT 0 18 1 58
- a1,57,60,56
- ... α diffuses to left and right in each time increment
- .TXT 2 -19 1 31
- a1,30,78,29
- Initial conditions: time t=0
- .EQN 2 0 2 11
- f[(0,x):0
- .EQN 0 16 2 11
- f[(0,0):0
- .EQN 0 16 2 12
- f[(0,50):0
- .TXT 0 16 2 20
- a2,19,30,26
- ... 0 everywhere
- but ...
- .EQN 3 -17 2 12
- f[(0,25):1
- .TXT 0 17 1 23
- a1,22,31,21
- ... 1 in the middle.
- .TXT 3 -48 1 37
- a1,36,78,35
- Difference equation for diffusion:
- .EQN 2 1 2 47
- f[(t+1,x):f[(t,x)+α*(f[(t,x-1)-2*f[(t,x)+f[(t,x+1))
- .TXT 3 -1 1 46
- a1,45,78,44
- Now plot concentration at t=0, t=4, and t=9
- .EQN 3 2 21 73
- &&f[(0,x),f[(4,x),f[(9,x){1,1,20,50,l}@&&x
-