home *** CD-ROM | disk | FTP | other *** search
-
- # define nearzero 1.0E-20
- # include <math.h>
- # include <stdlib.h>
-
- void PolyCurveFit(float *indvar,float *depvar,int numobs,int order,
- float *coef,float *yest,float *resid,float *see,
- float *coefsig, float *rsq,float *r,char *cferror)
- {
- int i;
- int j;
- int numcol;
- float *regmat;
- float seexx;
- float rsqxx;
- float rxx;
- float cferrorxx;
-
-
-
- regmat = (float *) calloc(numobs*(order),4);
-
- if ( order + 1 < numobs ) {
- for ( i = 0; i <= numobs-1; ++i ) {
- regmat[i*order] = indvar[i];
- for ( j = 1; j <= order-1; ++j ) {
- regmat[i*order+j] = indvar[i] * regmat[i*order+j - 1];
- }
- }
- MultipleReg(regmat,depvar,order,numobs,
- coef,yest,resid,see,coefsig,rsq,r,cferror);
- }
- else {
- (*cferror) = 1;
- }
- free(regmat);
- }
-
- void tridiag(float *mat,int n,float *vec)
- {
- int i;
- float pivot;
- float mult;
- float ci;
- float bi;
- char c;
-
- for ( i = 1; i <= n - 1; ++i ) {
- pivot = mat[i*4+0];
- ci = mat[i*4+1];
- bi = mat[i*4+2];
- mult = mat[(i+1)*4+3] / pivot;
-
- if ( fabs(mult) > nearzero ) {
- mat[(i+1)*4+3] = mult;
- mat[(i+1)*4+0] = mat[(i+1)*4+0] - mult * ci;
- mat[(i+1)*4+2] = mat[(i+1)*4+2] - mult * bi;
-
- }
- else {
- mat[(i+1)*4+3] = 0.0;
- }
- }
- vec[n] = mat[n*4+2] / mat[n*4+0];
- for ( i = n - 1; i >= 1; --i ) {
- vec[i] = (mat[i*4+2] - mat[i*4+1] * vec[i+1]) / mat[i*4+0];
- } }
-
- void CubicSplines(float *x,float *y,int n,float *s)
- {
- int i;
- float *eqn;
- float bb;
- float cc;
- float hh;
- float ff;
- float fi;
- float hi;
- float nextf;
- float *h;
- float *bvec;
- char c;
-
- eqn = (float *) calloc((n+1)*4,4);
-
- h = (float *) calloc(n+1,4);
- bvec = (float *) calloc(n+1,4);
-
- for ( i = 0; i <= n - 1; ++i ) {
- h[i] = x[i+1] - x[i];
- }
- hh = h[0];
- ff = y[0];
- nextf = y[1];
-
- for ( i = 1; i <= n - 1; ++i ) {
- fi = nextf;
- nextf = y[i+1];
- hi = h[i];
- eqn[i*4+2] = 3.0 * ((nextf - fi) / hi - (fi - ff) / hh);
- eqn[i*4+0] = 2.0 * (hh + hi);
- eqn[i*4+3] = hh;
- eqn[i*4+1] = hi;
- hh = hi;
- ff = fi;
- }
- tridiag(eqn,n - 1,bvec);
- hh = h[0];
- s[2] = bb;
- s[0] = y[0];
- cc = (y[1] - s[0]) / hh - bvec[1] * hh / 3.0;
- s[1] = cc;
- for ( i = 1; i <= n - 1; ++i ) {
- s[i*4+2] = bvec[i];
- s[i*4+0] = y[i];
- cc = (s[i*4+2] + bb) * hh + cc;
-
-
- s[i*4+1] = cc;
- s[(i-1)*4+3] = (s[i*4+2] - bb) / (3.0 * hh);
- bb = s[i*4+2];
- hh = h[i];
- }
- s[(n-1)*4+3] = -bb / (3.0 * hh);
- free(eqn); free(h); free(bvec);
- }
-
- float PolyCalc(float XIn,float *CoefVector,int order)
-
- {
- float _fret;
- int i;
- float YOut;
-
- YOut = CoefVector[order];
- for ( i = order - 1; i >= 0; --i ) {
- YOut = YOut * XIn + CoefVector[i];
- }
- _fret = YOut;
- return(_fret);
- }
-
- void CalcSpline(float *xv,float *coef,int n,float x,float *y)
- {
- int i;
- int j;
- int k;
- float *CoefVector;
- float dif;
-
- CoefVector = (float *) calloc(4,4);
-
- i = -1;
- do {
- i = i + 1;
- } while ( ! (((x >= xv[i]) && (x < xv[i + 1])) | (i == n)) );
- dif = x - xv[i];
- for ( j = 0; j <= 3; ++j ) {
- CoefVector[j] = coef[i*4+j];
- }
- (*y) = PolyCalc(dif,CoefVector,3);
- free(CoefVector);
- }
-