home *** CD-ROM | disk | FTP | other *** search
- /* complex.h
-
- Complex Number Library - Include File
- class complex: declarations for complex numbers.
-
- Copyright (c) 1990, 1992 by Borland International
- All Rights Reserved.
-
- All function names, member names, and operators have been borrowed
- from AT&T C++, except for the addition of:
-
- friend complex _Cdecl acos(complex _FAR &);
- friend complex _Cdecl asin(complex _FAR &);
- friend complex _Cdecl atan(complex _FAR &);
- friend complex _Cdecl log10(complex _FAR &);
- friend complex _Cdecl tan(complex _FAR &);
- friend complex _Cdecl tanh(complex _FAR &);
- complex _Cdecl operator+();
- complex _Cdecl operator-();
- */
-
- #ifndef __cplusplus
- #error Must use C++ for the type complex.
- #endif
-
- #if !defined(__COMPLEX_H)
- #define __COMPLEX_H
-
- #if !defined(___DEFS_H)
- #include <_defs.h>
- #endif
-
- #if !defined(__IOSTREAM_H)
- #include <iostream.h>
- #endif
-
- #if !defined(__MATH_H)
- #include <math.h>
- #endif
-
- #pragma option -Vo-
- #if defined(__BCOPT__) && !defined(_RTL_ALLOW_po)
- #pragma option -po-
- #endif
-
- _CLASSDEF(complex)
-
- class _CLASSTYPE complex {
-
- public:
- // constructors
- complex(double __re_val, double __im_val=0);
- complex();
-
- // complex manipulations
- friend double _Cdecl _FARFUNC real(complex _FAR &); // the real part
- friend double _Cdecl _FARFUNC imag(complex _FAR &); // the imaginary part
- friend complex _Cdecl _FARFUNC conj(complex _FAR &); // the complex conjugate
- friend double _Cdecl _FARFUNC norm(complex _FAR &); // the square of the magnitude
- friend double _Cdecl _FARFUNC arg(complex _FAR &); // the angle in the plane
-
- // Create a complex object given polar coordinates
- friend complex _Cdecl polar(double __mag, double __angle=0);
-
- // Overloaded ANSI C math functions
- friend double _Cdecl _FARFUNC abs(complex _FAR &);
- friend complex _Cdecl _FARFUNC acos(complex _FAR &);
- friend complex _Cdecl _FARFUNC asin(complex _FAR &);
- friend complex _Cdecl _FARFUNC atan(complex _FAR &);
- friend complex _Cdecl _FARFUNC cos(complex _FAR &);
- friend complex _Cdecl _FARFUNC cosh(complex _FAR &);
- friend complex _Cdecl _FARFUNC exp(complex _FAR &);
- friend complex _Cdecl _FARFUNC log(complex _FAR &);
- friend complex _Cdecl _FARFUNC log10(complex _FAR &);
- friend complex _Cdecl _FARFUNC pow(complex _FAR & __base, double __expon);
- friend complex _Cdecl _FARFUNC pow(double __base, complex _FAR & __expon);
- friend complex _Cdecl _FARFUNC pow(complex _FAR & __base, complex _FAR & __expon);
- friend complex _Cdecl _FARFUNC sin(complex _FAR &);
- friend complex _Cdecl _FARFUNC sinh(complex _FAR &);
- friend complex _Cdecl _FARFUNC sqrt(complex _FAR &);
- friend complex _Cdecl _FARFUNC tan(complex _FAR &);
- friend complex _Cdecl _FARFUNC tanh(complex _FAR &);
-
- // Binary Operator Functions
- friend complex _Cdecl _FARFUNC operator+(complex _FAR &, complex _FAR &);
- friend complex _Cdecl _FARFUNC operator+(double, complex _FAR &);
- friend complex _Cdecl _FARFUNC operator+(complex _FAR &, double);
- friend complex _Cdecl _FARFUNC operator-(complex _FAR &, complex _FAR &);
- friend complex _Cdecl _FARFUNC operator-(double, complex _FAR &);
- friend complex _Cdecl _FARFUNC operator-(complex _FAR &, double);
- friend complex _Cdecl _FARFUNC operator*(complex _FAR &, complex _FAR &);
- friend complex _Cdecl _FARFUNC operator*(complex _FAR &, double);
- friend complex _Cdecl _FARFUNC operator*(double, complex _FAR &);
- friend complex _Cdecl _FARFUNC operator/(complex _FAR &, complex _FAR &);
- friend complex _Cdecl _FARFUNC operator/(complex _FAR &, double);
- friend complex _Cdecl _FARFUNC operator/(double, complex _FAR &);
- friend int _Cdecl _FARFUNC operator==(complex _FAR &, complex _FAR &);
- friend int _Cdecl _FARFUNC operator!=(complex _FAR &, complex _FAR &);
- complex _FAR & _Cdecl operator+=(complex _FAR &);
- complex _FAR & _Cdecl operator+=(double);
- complex _FAR & _Cdecl operator-=(complex _FAR &);
- complex _FAR & _Cdecl operator-=(double);
- complex _FAR & _Cdecl operator*=(complex _FAR &);
- complex _FAR & _Cdecl operator*=(double);
- complex _FAR & _Cdecl operator/=(complex _FAR &);
- complex _FAR & _Cdecl operator/=(double);
- complex _Cdecl operator+();
- complex _Cdecl operator-();
-
- // Implementation
- private:
- double re, im;
- };
-
-
- // Inline complex functions
-
- inline complex::complex(double __re_val, double __im_val)
- {
- re = __re_val;
- im = __im_val;
- }
-
- inline complex::complex()
- {
- /* if you want your complex numbers initialized ...
- re = im = 0;
- */
- }
-
- inline complex _Cdecl complex::operator+()
- {
- return *this;
- }
-
- inline complex _Cdecl complex::operator-()
- {
- return complex(-re, -im);
- }
-
-
- // Definitions of compound-assignment operator member functions
-
- inline complex _FAR & _Cdecl complex::operator+=(complex _FAR & __z2)
- {
- re += __z2.re;
- im += __z2.im;
- return *this;
- }
-
- inline complex _FAR & _Cdecl complex::operator+=(double __re_val2)
- {
- re += __re_val2;
- return *this;
- }
-
- inline complex _FAR & _Cdecl complex::operator-=(complex _FAR & __z2)
- {
- re -= __z2.re;
- im -= __z2.im;
- return *this;
- }
-
- inline complex _FAR & _Cdecl complex::operator-=(double __re_val2)
- {
- re -= __re_val2;
- return *this;
- }
-
- inline complex _FAR & _Cdecl complex::operator*=(double __re_val2)
- {
- re *= __re_val2;
- im *= __re_val2;
- return *this;
- }
-
- inline complex _FAR & _Cdecl complex::operator/=(double __re_val2)
- {
- re /= __re_val2;
- im /= __re_val2;
- return *this;
- }
-
-
- // Definitions of non-member complex functions
-
- inline double _Cdecl real(complex _FAR & __z)
- {
- return __z.re;
- }
-
- inline double _Cdecl imag(complex _FAR & __z)
- {
- return __z.im;
- }
-
- inline complex _Cdecl conj(complex _FAR & __z)
- {
- return complex(__z.re, -__z.im);
- }
-
- inline complex _Cdecl polar(double __mag, double __angle)
- {
- return complex(__mag*cos(__angle), __mag*sin(__angle));
- }
-
-
- // Definitions of non-member binary operator functions
-
- inline complex _Cdecl operator+(complex _FAR & __z1, complex _FAR & __z2)
- {
- return complex(__z1.re + __z2.re, __z1.im + __z2.im);
- }
-
- inline complex _Cdecl operator+(double __re_val1, complex _FAR & __z2)
- {
- return complex(__re_val1 + __z2.re, __z2.im);
- }
-
- inline complex _Cdecl operator+(complex _FAR & __z1, double __re_val2)
- {
- return complex(__z1.re + __re_val2, __z1.im);
- }
-
- inline complex _Cdecl operator-(complex _FAR & __z1, complex _FAR & __z2)
- {
- return complex(__z1.re - __z2.re, __z1.im - __z2.im);
- }
-
- inline complex _Cdecl operator-(double __re_val1, complex _FAR & __z2)
- {
- return complex(__re_val1 - __z2.re, -__z2.im);
- }
-
- inline complex _Cdecl operator-(complex _FAR & __z1, double __re_val2)
- {
- return complex(__z1.re - __re_val2, __z1.im);
- }
-
- inline complex _Cdecl operator*(complex _FAR & __z1, double __re_val2)
- {
- return complex(__z1.re*__re_val2, __z1.im*__re_val2);
- }
-
- inline complex _Cdecl operator*(double __re_val1, complex _FAR & __z2)
- {
- return complex(__z2.re*__re_val1, __z2.im*__re_val1);
- }
-
- inline complex _Cdecl operator/(complex _FAR & __z1, double __re_val2)
- {
- return complex(__z1.re/__re_val2, __z1.im/__re_val2);
- }
-
- inline int _Cdecl operator==(complex _FAR & __z1, complex _FAR & __z2)
- {
- return __z1.re == __z2.re && __z1.im == __z2.im;
- }
-
- inline int _Cdecl operator!=(complex _FAR & __z1, complex _FAR & __z2)
- {
- return __z1.re != __z2.re || __z1.im != __z2.im;
- }
-
-
- // Complex stream I/O
-
- ostream _FAR & _Cdecl _FARFUNC operator<<(ostream _FAR &, complex _FAR &);
- istream _FAR & _Cdecl _FARFUNC operator>>(istream _FAR &, complex _FAR &);
-
- #pragma option -Vo.
- #if defined(__BCOPT__)
- #pragma option -po.
- #endif
-
- #endif // __COMPLEX_H
-