home *** CD-ROM | disk | FTP | other *** search
MacBinary | 1994-11-01 | 5.6 KB | [TEXT/CWIE] |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary).
You can browse this item here: MonotonicFit.c
Confidence | Program | Detection | Match Type | Support
|
---|
66%
| dexvert
| Compact Compressed (Unix) (archive/compact)
| ext
| Supported |
10%
| dexvert
| MacBinary (archive/macBinary)
| fallback
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| MacBinary II, inited, Tue Nov 1 20:49:06 1994, modified Tue Nov 1 20:49:06 1994, creator 'CWIE', type ASCII, 5069 bytes "MonotonicFit.c" , at 0x144d 422 bytes resource
| default (weak)
| |
99%
| file
| data
| default
| |
74%
| TrID
| Macintosh plain text (MacBinary)
| default
| |
25%
| TrID
| MacBinary 2
| default (weak)
| |
100%
| siegfried
| fmt/1762 MacBinary (II)
| default
| |
100%
| lsar
| MacBinary
| default
|
|
id metadata |
---|
key | value |
---|
macFileType | [TEXT] |
macFileCreator | [CWIE] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 0e 4d 6f 6e 6f 74 6f | 6e 69 63 46 69 74 2e 63 |..Monoto|nicFit.c|
|00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 43 57 49 | 45 01 00 00 00 00 00 00 |.TEXTCWI|E.......|
|00000050| 00 00 00 00 00 13 cd 00 | 00 01 a6 aa dc a0 92 aa |........|........|
|00000060| dc a0 92 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 03 3c 00 00 |........|.....<..|
|00000080| 2f 2a 0d 4d 6f 6e 6f 74 | 6f 6e 69 63 46 69 74 2e |/*.Monot|onicFit.|
|00000090| 63 0d 43 6f 70 79 72 69 | 67 68 74 20 28 63 29 20 |c.Copyri|ght (c) |
|000000a0| 31 39 37 39 2c 31 39 38 | 39 2c 31 39 39 30 20 44 |1979,198|9,1990 D|
|000000b0| 65 6e 69 73 20 47 2e 20 | 50 65 6c 6c 69 20 0d 0d |enis G. |Pelli ..|
|000000c0| 46 49 4e 44 20 4d 41 58 | 49 4d 55 4d 20 4c 49 4b |FIND MAX|IMUM LIK|
|000000d0| 45 4c 49 48 4f 4f 44 20 | 4d 4f 4e 4f 54 4f 4e 49 |ELIHOOD |MONOTONI|
|000000e0| 43 20 46 49 54 20 28 4d | 4c 4d 46 29 0d 47 69 76 |C FIT (M|LMF).Giv|
|000000f0| 65 6e 20 74 68 65 20 6e | 75 6d 62 65 72 20 6f 66 |en the n|umber of|
|00000100| 20 72 69 67 68 74 20 61 | 6e 64 20 77 72 6f 6e 67 | right a|nd wrong|
|00000110| 20 72 65 73 70 6f 6e 73 | 65 73 20 61 74 20 65 61 | respons|es at ea|
|00000120| 63 68 20 6f 66 20 73 65 | 76 65 72 61 6c 0d 63 6f |ch of se|veral.co|
|00000130| 6e 74 72 61 73 74 73 2c | 20 74 68 69 73 20 72 6f |ntrasts,| this ro|
|00000140| 75 74 69 6e 65 20 66 69 | 6e 64 73 20 74 68 65 20 |utine fi|nds the |
|00000150| 6d 61 78 69 6d 75 6d 20 | 6c 69 6b 65 6c 69 68 6f |maximum |likeliho|
|00000160| 6f 64 20 6d 6f 6e 6f 74 | 6f 6e 69 63 0d 70 73 79 |od monot|onic.psy|
|00000170| 63 68 6f 6d 65 74 72 69 | 63 20 66 75 6e 63 74 69 |chometri|c functi|
|00000180| 6f 6e 20 74 68 61 74 20 | 63 6f 75 6c 64 20 68 61 |on that |could ha|
|00000190| 76 65 20 67 69 76 65 6e | 20 72 69 73 65 20 74 6f |ve given| rise to|
|000001a0| 20 74 68 65 20 64 61 74 | 61 2e 0d 0d 54 68 65 20 | the dat|a...The |
|000001b0| 6f 72 69 67 69 6e 61 6c | 20 64 61 74 61 52 65 63 |original| dataRec|
|000001c0| 6f 72 64 20 69 73 20 4f | 56 45 52 57 52 49 54 54 |ord is O|VERWRITT|
|000001d0| 45 4e 20 61 6e 64 20 72 | 65 70 6c 61 63 65 64 20 |EN and r|eplaced |
|000001e0| 62 79 20 74 68 65 20 22 | 63 6f 6c 6c 61 70 73 65 |by the "|collapse|
|000001f0| 64 22 0d 64 61 74 61 20 | 77 68 69 63 68 20 72 65 |d".data |which re|
|00000200| 70 72 65 73 65 6e 74 20 | 74 68 65 20 6d 61 78 69 |present |the maxi|
|00000210| 6d 75 6d 20 6c 69 6b 65 | 6c 69 68 6f 6f 64 20 6d |mum like|lihood m|
|00000220| 6f 6e 6f 74 6f 6e 69 63 | 20 66 69 74 2e 0d 0d 54 |onotonic| fit...T|
|00000230| 68 65 20 6c 6f 67 20 6c | 69 6b 65 6c 69 68 6f 6f |he log l|ikelihoo|
|00000240| 64 20 61 6e 64 20 64 65 | 67 72 65 65 73 20 6f 66 |d and de|grees of|
|00000250| 20 66 72 65 65 64 6f 6d | 20 61 72 65 20 72 65 74 | freedom| are ret|
|00000260| 75 72 6e 65 64 2c 20 75 | 73 69 6e 67 20 74 68 65 |urned, u|sing the|
|00000270| 0d 75 73 65 72 2d 73 75 | 70 70 6c 69 65 64 20 70 |.user-su|pplied p|
|00000280| 6f 69 6e 74 73 2e 20 54 | 68 65 20 64 65 67 72 65 |oints. T|he degre|
|00000290| 65 73 20 6f 66 20 66 72 | 65 65 64 6f 6d 20 69 73 |es of fr|eedom is|
|000002a0| 20 65 71 75 61 6c 20 74 | 6f 20 74 68 65 20 6e 75 | equal t|o the nu|
|000002b0| 6d 62 65 72 20 6f 66 0d | 70 6f 69 6e 74 73 20 69 |mber of.|points i|
|000002c0| 6e 20 74 68 65 20 6d 61 | 78 69 6d 75 6d 20 6c 69 |n the ma|ximum li|
|000002d0| 6b 65 6c 69 68 6f 6f 64 | 20 6d 6f 6e 6f 74 6f 6e |kelihood| monoton|
|000002e0| 69 63 20 66 69 74 20 28 | 61 66 74 65 72 20 63 6f |ic fit (|after co|
|000002f0| 6c 6c 61 70 73 69 6e 67 | 29 2c 20 0d 6d 69 6e 75 |llapsing|), .minu|
|00000300| 73 20 31 20 69 66 20 62 | 6f 74 68 20 6c 69 6d 69 |s 1 if b|oth limi|
|00000310| 74 69 6e 67 20 70 72 6f | 62 61 62 69 6c 69 74 69 |ting pro|babiliti|
|00000320| 65 73 20 28 30 20 61 6e | 64 20 31 29 20 61 72 65 |es (0 an|d 1) are|
|00000330| 20 69 6e 63 6c 75 64 65 | 64 2e 0d 0d 54 48 45 4f | include|d...THEO|
|00000340| 52 45 4d 3a 20 54 68 65 | 20 4d 4c 4d 46 20 77 68 |REM: The| MLMF wh|
|00000350| 65 6e 20 74 77 6f 20 73 | 75 63 63 65 73 73 69 76 |en two s|uccessiv|
|00000360| 65 20 70 6f 69 6e 74 73 | 20 68 61 76 65 20 61 20 |e points| have a |
|00000370| 6e 6f 6e 6d 6f 6e 6f 74 | 6f 6e 69 63 0d 70 72 6f |nonmonot|onic.pro|
|00000380| 70 6f 72 74 69 6f 6e 20 | 63 6f 72 72 65 63 74 20 |portion |correct |
|00000390| 69 73 20 65 71 75 69 76 | 61 6c 65 6e 74 20 74 6f |is equiv|alent to|
|000003a0| 20 74 68 65 20 4d 4c 4d | 46 20 74 6f 20 63 6f 6c | the MLM|F to col|
|000003b0| 6c 61 70 73 65 64 20 64 | 61 74 61 20 77 68 65 72 |lapsed d|ata wher|
|000003c0| 65 0d 74 68 65 20 74 77 | 6f 20 70 6f 69 6e 74 73 |e.the tw|o points|
|000003d0| 20 68 61 76 65 20 62 65 | 65 6e 20 63 6f 6d 62 69 | have be|en combi|
|000003e0| 6e 65 64 20 69 6e 74 6f | 20 6f 6e 65 2e 20 22 45 |ned into| one. "E|
|000003f0| 71 75 69 76 61 6c 65 6e | 74 22 20 6d 65 61 6e 73 |quivalen|t" means|
|00000400| 20 74 68 61 74 0d 74 68 | 65 20 74 77 6f 20 4d 4c | that.th|e two ML|
|00000410| 4d 46 73 20 77 69 6c 6c | 20 62 65 20 65 71 75 61 |MFs will| be equa|
|00000420| 6c 20 61 74 20 61 6c 6c | 20 70 6f 69 6e 74 73 20 |l at all| points |
|00000430| 6f 74 68 65 72 20 74 68 | 61 6e 20 74 68 65 20 74 |other th|an the t|
|00000440| 77 6f 20 69 6e 0d 71 75 | 65 73 74 69 6f 6e 2c 20 |wo in.qu|estion, |
|00000450| 61 6e 64 20 74 68 65 20 | 6f 72 69 67 69 6e 61 6c |and the |original|
|00000460| 20 4d 4c 4d 46 20 77 69 | 6c 6c 20 68 61 76 65 20 | MLMF wi|ll have |
|00000470| 74 68 65 20 73 61 6d 65 | 20 76 61 6c 75 65 20 61 |the same| value a|
|00000480| 74 20 62 6f 74 68 20 6f | 66 0d 74 68 65 20 74 77 |t both o|f.the tw|
|00000490| 6f 20 6e 6f 6e 6d 6f 6e | 6f 74 6f 6e 69 63 20 70 |o nonmon|otonic p|
|000004a0| 6f 69 6e 74 73 20 61 73 | 20 74 68 65 20 65 71 75 |oints as| the equ|
|000004b0| 69 76 2e 20 4d 4c 4d 46 | 20 77 69 6c 6c 20 68 61 |iv. MLMF| will ha|
|000004c0| 76 65 20 61 74 20 74 68 | 65 0d 63 6f 6d 62 69 6e |ve at th|e.combin|
|000004d0| 65 64 20 70 6f 69 6e 74 | 2e 20 52 65 70 65 61 74 |ed point|. Repeat|
|000004e0| 65 64 20 61 70 70 6c 69 | 63 61 74 69 6f 6e 20 6f |ed appli|cation o|
|000004f0| 66 20 74 68 65 20 74 68 | 65 6f 72 65 6d 20 65 76 |f the th|eorem ev|
|00000500| 65 6e 74 75 61 6c 6c 79 | 20 67 69 76 65 73 0d 63 |entually| gives.c|
|00000510| 6f 6c 6c 61 70 73 65 64 | 20 64 61 74 61 20 77 69 |ollapsed| data wi|
|00000520| 74 68 20 6d 6f 6e 6f 74 | 6f 6e 69 63 61 6c 6c 79 |th monot|onically|
|00000530| 20 69 6e 63 72 65 61 73 | 69 6e 67 20 70 72 6f 70 | increas|ing prop|
|00000540| 6f 72 74 69 6f 6e 20 63 | 6f 72 72 65 63 74 2e 20 |ortion c|orrect. |
|00000550| 54 68 65 0d 4d 4c 4d 46 | 20 69 73 20 65 71 75 61 |The.MLMF| is equa|
|00000560| 6c 20 74 6f 20 74 68 65 | 73 65 20 70 72 6f 70 6f |l to the|se propo|
|00000570| 72 74 69 6f 6e 20 63 6f | 72 72 65 63 74 2e 0d 0d |rtion co|rrect...|
|00000580| 54 68 65 20 70 72 69 6e | 63 69 70 61 6c 20 75 73 |The prin|cipal us|
|00000590| 65 20 6f 66 20 74 68 65 | 20 4d 4c 4d 46 20 72 6f |e of the| MLMF ro|
|000005a0| 75 74 69 6e 65 20 69 73 | 20 74 6f 20 64 65 61 6c |utine is| to deal|
|000005b0| 20 77 69 74 68 20 74 68 | 65 20 70 72 6f 62 6c 65 | with th|e proble|
|000005c0| 6d 20 6f 66 20 61 73 73 | 65 73 73 69 6e 67 0d 74 |m of ass|essing.t|
|000005d0| 68 65 20 67 6f 6f 64 6e | 65 73 73 20 6f 66 20 61 |he goodn|ess of a|
|000005e0| 20 66 75 6e 63 74 69 6f | 6e 20 66 69 74 20 28 65 | functio|n fit (e|
|000005f0| 2e 67 2e 20 57 65 69 62 | 75 6c 6c 29 20 74 6f 20 |.g. Weib|ull) to |
|00000600| 64 61 74 61 0d 63 6f 6c | 6c 65 63 74 65 64 20 62 |data.col|lected b|
|00000610| 79 20 61 20 73 74 61 69 | 72 63 61 73 65 20 74 68 |y a stai|rcase th|
|00000620| 61 74 20 68 61 73 20 70 | 75 74 20 64 69 66 66 65 |at has p|ut diffe|
|00000630| 72 65 6e 74 20 6e 75 6d | 62 65 72 73 20 6f 66 20 |rent num|bers of |
|00000640| 74 72 69 61 6c 73 20 61 | 74 0d 65 61 63 68 20 63 |trials a|t.each c|
|00000650| 6f 6e 74 72 61 73 74 2e | 20 43 6c 65 61 72 6c 79 |ontrast.| Clearly|
|00000660| 20 74 68 65 20 75 6e 63 | 6f 6e 73 74 72 61 69 6e | the unc|onstrain|
|00000670| 65 64 20 66 69 74 20 69 | 73 20 73 6f 72 74 20 6f |ed fit i|s sort o|
|00000680| 66 20 73 69 6c 6c 79 20 | 66 6f 72 20 74 68 69 73 |f silly |for this|
|00000690| 20 63 61 73 65 2c 20 0d | 65 73 70 65 63 69 61 6c | case, .|especial|
|000006a0| 6c 79 20 77 68 65 6e 20 | 74 68 65 72 65 20 61 72 |ly when |there ar|
|000006b0| 65 20 6d 61 6e 79 0d 63 | 6f 6e 74 72 61 73 74 73 |e many.c|ontrasts|
|000006c0| 20 77 69 74 68 20 6f 6e | 6c 79 20 73 69 6e 67 6c | with on|ly singl|
|000006d0| 65 20 74 72 69 61 6c 73 | 2c 20 61 6e 64 20 69 74 |e trials|, and it|
|000006e0| 27 73 20 6e 6f 74 20 63 | 6c 65 61 72 20 68 6f 77 |'s not c|lear how|
|000006f0| 20 74 6f 20 63 6f 75 6e | 74 0d 69 74 73 20 64 65 | to coun|t.its de|
|00000700| 67 72 65 65 73 20 6f 66 | 20 66 72 65 65 64 6f 6d |grees of| freedom|
|00000710| 2e 20 28 4f 6e 65 20 63 | 6f 6e 74 72 61 73 74 20 |. (One c|ontrast |
|00000720| 6d 61 79 20 68 61 76 65 | 20 32 30 30 20 74 72 69 |may have| 200 tri|
|00000730| 61 6c 73 2c 20 61 6e 6f | 74 68 65 72 20 6d 61 79 |als, ano|ther may|
|00000740| 0d 68 61 76 65 20 6f 6e | 65 20 74 72 69 61 6c 2e |.have on|e trial.|
|00000750| 20 44 6f 20 74 68 65 79 | 20 65 61 63 68 20 63 6f | Do they| each co|
|00000760| 75 6e 74 20 61 73 20 61 | 20 64 65 67 72 65 65 20 |unt as a| degree |
|00000770| 6f 66 20 66 72 65 65 64 | 6f 6d 3f 20 4e 6f 20 67 |of freed|om? No g|
|00000780| 6f 6f 64 20 61 6e 73 77 | 65 72 2e 29 0d 54 68 65 |ood answ|er.).The|
|00000790| 20 4d 4c 4d 46 20 66 69 | 6e 64 73 20 74 68 65 20 | MLMF fi|nds the |
|000007a0| 6d 61 78 69 6d 75 6d 20 | 6c 69 6b 65 6c 69 68 6f |maximum |likeliho|
|000007b0| 6f 64 20 6d 6f 6e 6f 74 | 6f 6e 69 63 0d 66 69 74 |od monot|onic.fit|
|000007c0| 2c 20 28 61 6e 64 20 61 | 6c 6f 6e 67 20 74 68 65 |, (and a|long the|
|000007d0| 20 77 61 79 20 64 65 74 | 65 72 6d 69 6e 65 73 20 | way det|ermines |
|000007e0| 74 68 65 20 6e 75 6d 62 | 65 72 20 6f 66 20 64 65 |the numb|er of de|
|000007f0| 67 72 65 65 73 20 6f 66 | 20 66 72 65 65 64 6f 6d |grees of| freedom|
|00000800| 29 2c 20 0d 61 6e 64 20 | 69 6e 20 70 72 61 63 74 |), .and |in pract|
|00000810| 69 63 65 20 6d 61 6b 65 | 73 20 61 20 67 6f 6f 64 |ice make|s a good|
|00000820| 20 6e 75 6c 6c 20 68 79 | 70 6f 74 68 65 73 69 73 | null hy|pothesis|
|00000830| 20 66 6f 72 0d 61 73 73 | 65 73 73 69 6e 67 20 74 | for.ass|essing t|
|00000840| 68 65 20 57 65 69 62 75 | 6c 6c 20 66 69 74 2e 20 |he Weibu|ll fit. |
|00000850| 57 68 61 74 27 73 20 63 | 75 74 65 20 61 62 6f 75 |What's c|ute abou|
|00000860| 74 20 4d 4c 4d 46 20 69 | 73 20 74 68 61 74 20 69 |t MLMF i|s that i|
|00000870| 74 20 69 73 20 66 61 73 | 74 2e 0d 49 6e 20 74 69 |t is fas|t..In ti|
|00000880| 6d 65 20 70 72 6f 70 6f | 72 74 69 6f 6e 61 6c 20 |me propo|rtional |
|00000890| 74 6f 20 74 68 65 20 6e | 75 6d 62 65 72 20 6f 66 |to the n|umber of|
|000008a0| 20 63 6f 6e 74 72 61 73 | 74 73 20 69 74 20 63 6f | contras|ts it co|
|000008b0| 6d 70 75 74 65 73 20 74 | 68 65 20 0d 6d 6f 6e 6f |mputes t|he .mono|
|000008c0| 74 6f 6e 69 63 20 66 69 | 74 20 64 69 72 65 63 74 |tonic fi|t direct|
|000008d0| 6c 79 2e 20 49 20 77 6f | 72 6b 65 64 20 74 68 69 |ly. I wo|rked thi|
|000008e0| 73 20 6f 75 74 20 66 6f | 72 20 6d 79 73 65 6c 66 |s out fo|r myself|
|000008f0| 20 77 68 69 6c 65 20 69 | 6e 20 67 72 61 64 75 61 | while i|n gradua|
|00000900| 74 65 20 0d 73 63 68 6f | 6f 6c 2c 20 62 75 74 20 |te .scho|ol, but |
|00000910| 4d 69 73 68 61 20 50 61 | 76 65 6c 20 74 65 6c 6c |Misha Pa|vel tell|
|00000920| 73 20 6d 65 20 74 68 61 | 74 20 74 68 65 72 65 20 |s me tha|t there |
|00000930| 69 73 20 61 63 74 75 61 | 6c 6c 79 20 61 20 77 68 |is actua|lly a wh|
|00000940| 6f 6c 65 20 6c 69 74 65 | 72 61 74 75 72 65 0d 6f |ole lite|rature.o|
|00000950| 6e 20 74 68 69 73 20 74 | 6f 70 69 63 2e 0d 48 49 |n this t|opic..HI|
|00000960| 53 54 4f 52 59 3a 0d 32 | 39 2d 4a 55 4c 2d 37 39 |STORY:.2|9-JUL-79|
|00000970| 09 64 67 70 09 77 72 6f | 74 65 20 69 74 20 69 6e |.dgp.wro|te it in|
|00000980| 20 46 4f 52 54 52 41 4e | 0d 38 2f 39 2f 38 39 20 | FORTRAN|.8/9/89 |
|00000990| 09 09 64 67 70 09 74 72 | 61 6e 73 6c 61 74 65 64 |..dgp.tr|anslated|
|000009a0| 20 69 74 20 74 6f 20 43 | 2c 20 62 75 74 20 62 75 | it to C|, but bu|
|000009b0| 74 20 64 69 64 6e 27 74 | 20 74 65 73 74 20 69 74 |t didn't| test it|
|000009c0| 2e 0d 34 2f 35 2f 39 30 | 09 09 64 67 70 09 64 65 |..4/5/90|..dgp.de|
|000009d0| 62 75 67 67 65 64 2e 0d | 34 2f 37 2f 39 30 09 09 |bugged..|4/7/90..|
|000009e0| 64 67 70 09 61 64 64 65 | 64 20 71 73 6f 72 74 28 |dgp.adde|d qsort(|
|000009f0| 29 2e 0d 31 30 2f 32 39 | 2f 39 30 09 64 67 70 09 |)..10/29|/90.dgp.|
|00000a00| 74 69 64 69 65 64 20 75 | 70 20 74 68 65 20 63 6f |tidied u|p the co|
|00000a10| 6d 6d 65 6e 74 73 2e 0d | 2a 2f 0d 23 69 6e 63 6c |mments..|*/.#incl|
|00000a20| 75 64 65 20 22 56 69 64 | 65 6f 54 6f 6f 6c 62 6f |ude "Vid|eoToolbo|
|00000a30| 78 2e 68 22 0d 23 69 6e | 63 6c 75 64 65 20 22 51 |x.h".#in|clude "Q|
|00000a40| 75 69 63 6b 33 2e 68 22 | 0d 0d 76 6f 69 64 20 4d |uick3.h"|..void M|
|00000a50| 6f 6e 6f 74 6f 6e 69 63 | 46 69 74 28 64 61 74 61 |onotonic|Fit(data|
|00000a60| 52 65 63 6f 72 64 20 2a | 64 61 74 61 50 74 72 2c |Record *|dataPtr,|
|00000a70| 64 6f 75 62 6c 65 20 2a | 6c 6f 67 4c 69 6b 65 6c |double *|logLikel|
|00000a80| 69 68 6f 6f 64 50 74 72 | 2c 69 6e 74 20 2a 64 65 |ihoodPtr|,int *de|
|00000a90| 67 72 65 65 73 4f 66 46 | 72 65 65 64 6f 6d 50 74 |greesOfF|reedomPt|
|00000aa0| 72 29 0d 7b 0d 09 65 6e | 75 6d 7b 45 4e 44 3d 2d |r).{..en|um{END=-|
|00000ab0| 31 2c 44 45 4c 45 54 45 | 44 3d 2d 32 7d 3b 0d 09 |1,DELETE|D=-2};..|
|00000ac0| 6c 6f 6e 67 20 68 65 61 | 64 3b 0d 09 6c 6f 6e 67 |long hea|d;..long|
|00000ad0| 20 79 5b 4d 41 58 5f 43 | 4f 4e 54 52 41 53 54 53 | y[MAX_C|ONTRASTS|
|00000ae0| 5d 3b 09 09 2f 2a 20 6c | 6f 6e 67 20 74 6f 20 61 |];../* l|ong to a|
|00000af0| 6c 6c 6f 77 20 68 75 67 | 65 20 6e 75 6d 62 65 72 |llow hug|e number|
|00000b00| 20 6f 66 20 74 72 69 61 | 6c 73 20 70 65 72 20 70 | of tria|ls per p|
|00000b10| 6f 69 6e 74 20 2a 2f 0d | 09 6c 6f 6e 67 20 74 5b |oint */.|.long t[|
|00000b20| 4d 41 58 5f 43 4f 4e 54 | 52 41 53 54 53 5d 3b 0d |MAX_CONT|RASTS];.|
|00000b30| 09 6c 6f 6e 67 20 6e 3b | 0d 09 64 6f 75 62 6c 65 |.long n;|..double|
|00000b40| 20 70 5b 4d 41 58 5f 43 | 4f 4e 54 52 41 53 54 53 | p[MAX_C|ONTRASTS|
|00000b50| 5d 3b 09 2f 2a 20 74 68 | 65 20 76 61 6c 75 65 73 |];./* th|e values|
|00000b60| 20 6f 66 20 74 68 65 20 | 4d 4c 4d 46 20 70 73 79 | of the |MLMF psy|
|00000b70| 63 68 6f 6d 65 74 72 69 | 63 20 66 75 6e 63 74 69 |chometri|c functi|
|00000b80| 6f 6e 2e 20 2a 2f 0d 09 | 6c 6f 6e 67 20 6e 65 78 |on. */..|long nex|
|00000b90| 74 5b 4d 41 58 5f 43 4f | 4e 54 52 41 53 54 53 5d |t[MAX_CO|NTRASTS]|
|00000ba0| 3b 0d 09 69 6e 74 20 66 | 6c 61 67 3b 0d 09 6c 6f |;..int f|lag;..lo|
|00000bb0| 6e 67 20 69 2c 6a 2c 6a | 6a 3b 0d 0d 09 2f 2a 0d |ng i,j,j|j;.../*.|
|00000bc0| 09 53 6f 72 74 20 74 68 | 65 20 63 6f 6e 74 72 61 |.Sort th|e contra|
|00000bd0| 73 74 52 65 63 6f 72 64 | 73 20 69 6e 20 6f 72 64 |stRecord|s in ord|
|00000be0| 65 72 20 6f 66 20 69 6e | 63 72 65 61 73 69 6e 67 |er of in|creasing|
|00000bf0| 20 63 6f 6e 74 72 61 73 | 74 0d 09 26 20 6d 65 72 | contras|t..& mer|
|00000c00| 67 65 20 64 61 74 61 20 | 61 74 20 65 71 75 61 6c |ge data |at equal|
|00000c10| 20 63 6f 6e 74 72 61 73 | 74 73 2e 0d 09 2a 2f 0d | contras|ts...*/.|
|00000c20| 09 53 6f 72 74 41 6e 64 | 4d 65 72 67 65 43 6f 6e |.SortAnd|MergeCon|
|00000c30| 74 72 61 73 74 73 28 64 | 61 74 61 50 74 72 29 3b |trasts(d|ataPtr);|
|00000c40| 0d 0d 09 2f 2a 20 4c 6f | 61 64 20 75 70 20 74 68 |.../* Lo|ad up th|
|00000c50| 65 20 61 72 72 61 79 73 | 2e 20 6e 65 78 74 5b 5d |e arrays|. next[]|
|00000c60| 20 69 73 20 61 20 6c 69 | 6e 6b 65 64 20 6c 69 73 | is a li|nked lis|
|00000c70| 74 2e 20 2a 2f 0d 09 68 | 65 61 64 3d 30 3b 0d 09 |t. */..h|ead=0;..|
|00000c80| 66 6f 72 28 69 3d 30 3b | 69 3c 64 61 74 61 50 74 |for(i=0;|i<dataPt|
|00000c90| 72 2d 3e 63 6f 6e 74 72 | 61 73 74 73 3b 69 2b 2b |r->contr|asts;i++|
|00000ca0| 29 7b 0d 09 09 79 5b 69 | 5d 3d 64 61 74 61 50 74 |){...y[i|]=dataPt|
|00000cb0| 72 2d 3e 63 5b 69 5d 2e | 63 6f 72 72 65 63 74 3b |r->c[i].|correct;|
|00000cc0| 0d 09 09 74 5b 69 5d 3d | 64 61 74 61 50 74 72 2d |...t[i]=|dataPtr-|
|00000cd0| 3e 63 5b 69 5d 2e 74 72 | 69 61 6c 73 3b 0d 09 09 |>c[i].tr|ials;...|
|00000ce0| 70 5b 69 5d 3d 79 5b 69 | 5d 2f 28 64 6f 75 62 6c |p[i]=y[i|]/(doubl|
|00000cf0| 65 29 74 5b 69 5d 3b 0d | 09 09 6e 65 78 74 5b 69 |e)t[i];.|..next[i|
|00000d00| 5d 3d 69 2b 31 3b 0d 09 | 7d 0d 09 6e 65 78 74 5b |]=i+1;..|}..next[|
|00000d10| 69 2d 31 5d 3d 45 4e 44 | 3b 0d 09 2f 2a 0d 09 41 |i-1]=END|;../*..A|
|00000d20| 73 73 75 6d 65 20 74 68 | 65 20 64 61 74 61 20 61 |ssume th|e data a|
|00000d30| 72 65 20 69 6e 20 6f 72 | 64 65 72 20 6f 66 20 69 |re in or|der of i|
|00000d40| 6e 63 72 65 61 73 69 6e | 67 20 63 6f 6e 74 72 61 |ncreasin|g contra|
|00000d50| 73 74 2e 0d 09 4e 6f 77 | 20 72 65 70 65 74 69 74 |st...Now| repetit|
|00000d60| 69 76 65 6c 79 20 61 70 | 70 6c 79 20 74 68 65 20 |ively ap|ply the |
|00000d70| 74 68 65 6f 72 65 6d 2e | 0d 09 45 61 63 68 20 74 |theorem.|..Each t|
|00000d80| 69 6d 65 20 61 20 6e 6f | 6e 6d 6f 6e 6f 74 6f 6e |ime a no|nmonoton|
|00000d90| 69 63 20 70 61 69 72 20 | 6f 66 20 70 6f 69 6e 74 |ic pair |of point|
|00000da0| 73 20 69 73 20 66 6f 75 | 6e 64 2c 0d 09 74 68 65 |s is fou|nd,..the|
|00000db0| 79 20 61 72 65 20 72 65 | 70 6c 61 63 65 64 20 62 |y are re|placed b|
|00000dc0| 79 20 61 20 73 69 6e 67 | 6c 65 20 70 6f 69 6e 74 |y a sing|le point|
|00000dd0| 20 77 69 74 68 20 74 68 | 65 20 73 75 6d 20 6f 66 | with th|e sum of|
|00000de0| 20 74 68 65 0d 09 64 61 | 74 61 20 61 74 20 74 68 | the..da|ta at th|
|00000df0| 65 20 74 77 6f 20 70 6f | 69 6e 74 73 2e 0d 09 53 |e two po|ints...S|
|00000e00| 75 63 63 65 73 73 69 76 | 65 20 70 61 73 73 65 73 |uccessiv|e passes|
|00000e10| 20 61 72 65 20 6d 61 64 | 65 20 74 68 72 6f 75 67 | are mad|e throug|
|00000e20| 68 20 74 68 65 20 6c 69 | 6e 6b 65 64 20 6c 69 73 |h the li|nked lis|
|00000e30| 74 20 75 6e 74 69 6c 0d | 09 6e 6f 20 6e 6f 6e 6d |t until.|.no nonm|
|00000e40| 6f 6e 6f 74 6f 6e 69 63 | 69 74 69 65 73 20 61 72 |onotonic|ities ar|
|00000e50| 65 20 66 6f 75 6e 64 20 | 28 69 2e 65 2e 20 66 6c |e found |(i.e. fl|
|00000e60| 61 67 3d 3d 46 41 4c 53 | 45 29 2e 0d 09 2a 2f 0d |ag==FALS|E)...*/.|
|00000e70| 09 66 6c 61 67 3d 54 52 | 55 45 3b 0d 09 77 68 69 |.flag=TR|UE;..whi|
|00000e80| 6c 65 28 66 6c 61 67 29 | 7b 0d 09 09 66 6c 61 67 |le(flag)|{...flag|
|00000e90| 3d 46 41 4c 53 45 3b 0d | 09 09 6a 3d 68 65 61 64 |=FALSE;.|..j=head|
|00000ea0| 3b 0d 09 09 66 6f 72 28 | 69 3d 30 3b 69 3c 64 61 |;...for(|i=0;i<da|
|00000eb0| 74 61 50 74 72 2d 3e 63 | 6f 6e 74 72 61 73 74 73 |taPtr->c|ontrasts|
|00000ec0| 3b 69 2b 2b 29 7b 0d 09 | 09 09 6a 6a 3d 6e 65 78 |;i++){..|..jj=nex|
|00000ed0| 74 5b 6a 5d 3b 0d 09 09 | 09 69 66 28 6a 6a 3d 3d |t[j];...|.if(jj==|
|00000ee0| 45 4e 44 29 62 72 65 61 | 6b 3b 0d 09 09 09 69 66 |END)brea|k;....if|
|00000ef0| 28 74 5b 6a 5d 3d 3d 30 | 20 7c 7c 20 74 5b 6a 6a |(t[j]==0| || t[jj|
|00000f00| 5d 3d 3d 30 20 7c 7c 20 | 70 5b 6a 5d 20 3e 20 70 |]==0 || |p[j] > p|
|00000f10| 5b 6a 6a 5d 29 20 7b 0d | 09 09 09 09 2f 2a 20 74 |[jj]) {.|..../* t|
|00000f20| 68 65 73 65 20 74 77 6f | 20 70 6f 69 6e 74 73 20 |hese two| points |
|00000f30| 61 72 65 20 6e 6f 6e 6d | 6f 6e 6f 74 6f 6e 69 63 |are nonm|onotonic|
|00000f40| 2c 20 73 6f 20 6d 65 72 | 67 65 20 74 68 65 6d 20 |, so mer|ge them |
|00000f50| 2a 2f 0d 09 09 09 09 2f | 2a 20 50 6f 69 6e 74 73 |*/...../|* Points|
|00000f60| 20 77 69 74 68 20 7a 65 | 72 6f 20 74 72 69 61 6c | with ze|ro trial|
|00000f70| 73 20 73 68 6f 75 6c 64 | 20 62 65 20 6d 65 72 67 |s should| be merg|
|00000f80| 65 64 20 61 73 20 77 65 | 6c 6c 20 2a 2f 0d 09 09 |ed as we|ll */...|
|00000f90| 09 20 20 20 20 66 6c 61 | 67 3d 54 52 55 45 3b 09 |. fla|g=TRUE;.|
|00000fa0| 09 09 09 09 09 09 0d 09 | 09 09 20 20 20 20 79 5b |........|.. y[|
|00000fb0| 6a 5d 20 2b 3d 20 79 5b | 6a 6a 5d 3b 0d 09 09 09 |j] += y[|jj];....|
|00000fc0| 20 20 20 20 74 5b 6a 5d | 20 2b 3d 20 74 5b 6a 6a | t[j]| += t[jj|
|00000fd0| 5d 3b 0d 09 09 09 20 20 | 20 20 70 5b 6a 5d 3d 79 |];.... | p[j]=y|
|00000fe0| 5b 6a 5d 2f 28 64 6f 75 | 62 6c 65 29 74 5b 6a 5d |[j]/(dou|ble)t[j]|
|00000ff0| 3b 0d 09 09 09 20 20 20 | 20 6e 65 78 74 5b 6a 5d |;.... | next[j]|
|00001000| 3d 6e 65 78 74 5b 6a 6a | 5d 3b 0d 09 09 09 20 20 |=next[jj|];.... |
|00001010| 20 20 6e 65 78 74 5b 6a | 6a 5d 3d 44 45 4c 45 54 | next[j|j]=DELET|
|00001020| 45 44 3b 09 09 09 09 2f | 2a 20 6d 61 72 6b 20 74 |ED;..../|* mark t|
|00001030| 68 65 20 64 65 6c 65 74 | 65 64 20 70 6f 69 6e 74 |he delet|ed point|
|00001040| 20 2a 2f 0d 09 09 09 20 | 20 20 20 6a 6a 3d 6a 3b | */.... | jj=j;|
|00001050| 0d 09 09 09 7d 0d 09 09 | 09 6a 3d 6a 6a 3b 0d 09 |....}...|.j=jj;..|
|00001060| 09 7d 0d 09 7d 0d 0d 09 | 2f 2a 20 0d 09 41 73 73 |.}..}...|/* ..Ass|
|00001070| 69 67 6e 20 70 72 6f 62 | 61 62 69 6c 69 74 69 65 |ign prob|abilitie|
|00001080| 73 20 74 6f 20 74 68 65 | 20 64 65 6c 65 74 65 64 |s to the| deleted|
|00001090| 20 70 6f 69 6e 74 73 2e | 0d 09 2a 2f 0d 09 66 6f | points.|..*/..fo|
|000010a0| 72 28 69 3d 31 3b 69 3c | 64 61 74 61 50 74 72 2d |r(i=1;i<|dataPtr-|
|000010b0| 3e 63 6f 6e 74 72 61 73 | 74 73 3b 69 2b 2b 29 7b |>contras|ts;i++){|
|000010c0| 0d 09 09 69 66 28 6e 65 | 78 74 5b 69 5d 3d 3d 44 |...if(ne|xt[i]==D|
|000010d0| 45 4c 45 54 45 44 29 20 | 70 5b 69 5d 3d 70 5b 69 |ELETED) |p[i]=p[i|
|000010e0| 2d 31 5d 3b 0d 09 7d 0d | 0d 09 2f 2a 20 0d 09 43 |-1];..}.|../* ..C|
|000010f0| 6f 75 6e 74 20 74 68 65 | 20 6e 75 6d 62 65 72 20 |ount the| number |
|00001100| 6f 66 20 64 65 67 72 65 | 65 73 20 6f 66 20 66 72 |of degre|es of fr|
|00001110| 65 65 64 6f 6d 2e 0d 09 | 2a 2f 0d 09 2a 64 65 67 |eedom...|*/..*deg|
|00001120| 72 65 65 73 4f 66 46 72 | 65 65 64 6f 6d 50 74 72 |reesOfFr|eedomPtr|
|00001130| 3d 30 3b 0d 09 66 6f 72 | 28 69 3d 30 3b 69 3c 64 |=0;..for|(i=0;i<d|
|00001140| 61 74 61 50 74 72 2d 3e | 63 6f 6e 74 72 61 73 74 |ataPtr->|contrast|
|00001150| 73 3b 69 2b 2b 29 7b 0d | 09 09 69 66 28 6e 65 78 |s;i++){.|..if(nex|
|00001160| 74 5b 69 5d 21 3d 44 45 | 4c 45 54 45 44 29 20 28 |t[i]!=DE|LETED) (|
|00001170| 2a 64 65 67 72 65 65 73 | 4f 66 46 72 65 65 64 6f |*degrees|OfFreedo|
|00001180| 6d 50 74 72 29 2b 2b 3b | 0d 09 7d 0d 09 69 66 28 |mPtr)++;|..}..if(|
|00001190| 70 5b 30 5d 3d 3d 30 2e | 30 20 26 26 20 70 5b 64 |p[0]==0.|0 && p[d|
|000011a0| 61 74 61 50 74 72 2d 3e | 63 6f 6e 74 72 61 73 74 |ataPtr->|contrast|
|000011b0| 73 2d 31 5d 20 3d 3d 20 | 31 2e 30 29 20 28 2a 64 |s-1] == |1.0) (*d|
|000011c0| 65 67 72 65 65 73 4f 66 | 46 72 65 65 64 6f 6d 50 |egreesOf|FreedomP|
|000011d0| 74 72 29 2d 2d 3b 0d 0d | 09 2f 2a 0d 09 43 6f 6d |tr)--;..|./*..Com|
|000011e0| 70 75 74 65 20 74 68 65 | 20 6c 6f 67 20 6c 69 6b |pute the| log lik|
|000011f0| 65 6c 69 68 6f 6f 64 0d | 09 2a 2f 0d 09 2a 6c 6f |elihood.|.*/..*lo|
|00001200| 67 4c 69 6b 65 6c 69 68 | 6f 6f 64 50 74 72 3d 30 |gLikelih|oodPtr=0|
|00001210| 2e 30 3b 0d 09 66 6f 72 | 28 69 3d 30 3b 69 3c 64 |.0;..for|(i=0;i<d|
|00001220| 61 74 61 50 74 72 2d 3e | 63 6f 6e 74 72 61 73 74 |ataPtr->|contrast|
|00001230| 73 3b 69 2b 2b 29 7b 0d | 09 09 6e 3d 64 61 74 61 |s;i++){.|..n=data|
|00001240| 50 74 72 2d 3e 63 5b 69 | 5d 2e 63 6f 72 72 65 63 |Ptr->c[i|].correc|
|00001250| 74 3b 0d 09 09 69 66 28 | 6e 3e 30 29 20 2a 6c 6f |t;...if(|n>0) *lo|
|00001260| 67 4c 69 6b 65 6c 69 68 | 6f 6f 64 50 74 72 20 2b |gLikelih|oodPtr +|
|00001270| 3d 6e 2a 6c 6f 67 28 70 | 5b 69 5d 29 3b 0d 09 09 |=n*log(p|[i]);...|
|00001280| 6e 3d 64 61 74 61 50 74 | 72 2d 3e 63 5b 69 5d 2e |n=dataPt|r->c[i].|
|00001290| 74 72 69 61 6c 73 2d 64 | 61 74 61 50 74 72 2d 3e |trials-d|ataPtr->|
|000012a0| 63 5b 69 5d 2e 63 6f 72 | 72 65 63 74 3b 0d 09 09 |c[i].cor|rect;...|
|000012b0| 69 66 28 6e 3e 30 29 20 | 2a 6c 6f 67 4c 69 6b 65 |if(n>0) |*logLike|
|000012c0| 6c 69 68 6f 6f 64 50 74 | 72 20 2b 3d 6e 2a 6c 6f |lihoodPt|r +=n*lo|
|000012d0| 67 28 31 2e 30 2d 70 5b | 69 5d 29 3b 0d 09 7d 0d |g(1.0-p[|i]);..}.|
|000012e0| 0d 09 2f 2a 0d 09 54 6f | 20 72 65 74 75 72 6e 20 |../*..To| return |
|000012f0| 74 68 65 20 72 65 73 75 | 6c 74 73 2c 20 4f 56 45 |the resu|lts, OVE|
|00001300| 52 57 52 49 54 45 20 74 | 68 65 20 64 61 74 61 52 |RWRITE t|he dataR|
|00001310| 65 63 6f 72 64 20 77 69 | 74 68 0d 09 74 68 65 20 |ecord wi|th..the |
|00001320| 6d 61 78 69 6d 75 6d 20 | 6c 69 6b 65 6c 69 68 6f |maximum |likeliho|
|00001330| 6f 64 20 6d 6f 6e 6f 74 | 6f 6e 69 63 20 66 69 74 |od monot|onic fit|
|00001340| 2c 20 77 68 65 72 65 20 | 70 3d 63 6f 72 72 65 63 |, where |p=correc|
|00001350| 74 2f 74 72 69 61 6c 73 | 2e 0d 09 2a 2f 0d 09 66 |t/trials|...*/..f|
|00001360| 6f 72 28 69 3d 30 3b 69 | 3c 64 61 74 61 50 74 72 |or(i=0;i|<dataPtr|
|00001370| 2d 3e 63 6f 6e 74 72 61 | 73 74 73 3b 69 2b 2b 29 |->contra|sts;i++)|
|00001380| 7b 0d 09 09 69 66 28 6e | 65 78 74 5b 69 5d 21 3d |{...if(n|ext[i]!=|
|00001390| 44 45 4c 45 54 45 44 29 | 20 7b 0d 09 09 09 64 61 |DELETED)| {....da|
|000013a0| 74 61 50 74 72 2d 3e 63 | 5b 69 5d 2e 63 6f 72 72 |taPtr->c|[i].corr|
|000013b0| 65 63 74 3d 79 5b 69 5d | 3b 0d 09 09 09 64 61 74 |ect=y[i]|;....dat|
|000013c0| 61 50 74 72 2d 3e 63 5b | 69 5d 2e 74 72 69 61 6c |aPtr->c[|i].trial|
|000013d0| 73 3d 74 5b 69 5d 3b 0d | 09 09 7d 65 6c 73 65 7b |s=t[i];.|..}else{|
|000013e0| 0d 09 09 09 64 61 74 61 | 50 74 72 2d 3e 63 5b 69 |....data|Ptr->c[i|
|000013f0| 5d 2e 63 6f 72 72 65 63 | 74 3d 64 61 74 61 50 74 |].correc|t=dataPt|
|00001400| 72 2d 3e 63 5b 69 2d 31 | 5d 2e 63 6f 72 72 65 63 |r->c[i-1|].correc|
|00001410| 74 3b 0d 09 09 09 64 61 | 74 61 50 74 72 2d 3e 63 |t;....da|taPtr->c|
|00001420| 5b 69 5d 2e 74 72 69 61 | 6c 73 3d 64 61 74 61 50 |[i].tria|ls=dataP|
|00001430| 74 72 2d 3e 63 5b 69 2d | 31 5d 2e 74 72 69 61 6c |tr->c[i-|1].trial|
|00001440| 73 3b 0d 09 09 7d 0d 09 | 7d 0d 7d 0d 0d 00 00 00 |s;...}..|}.}.....|
|00001450| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001460| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001470| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001480| 00 00 01 00 00 00 01 68 | 00 00 00 68 00 00 00 3e |.......h|...h...>|
|00001490| 3e 0d 23 69 6e 63 6c 75 | 64 65 20 3c 73 74 64 6c |>.#inclu|de <stdl|
|000014a0| 69 62 2e 68 3e 0d 23 69 | 6e 63 6c 75 64 65 20 22 |ib.h>.#i|nclude "|
|000014b0| 0e 4d 6f 6e 6f 74 6f 6e | 69 63 46 69 74 2e 63 63 |.Monoton|icFit.cc|
|000014c0| 02 00 00 00 54 45 58 54 | 43 57 49 45 01 00 00 3c |....TEXT|CWIE...<|
|000014d0| 00 00 54 45 58 54 43 57 | 49 45 01 00 00 3c 00 00 |..TEXTCW|IE...<..|
|000014e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000014f0| 00 00 a2 41 5d 66 00 00 | 13 cd 00 00 01 a6 65 67 |...A]f..|......eg|
|00001500| 72 65 65 73 4f 66 46 72 | 65 65 64 6f 6d 50 74 72 |reesOfFr|eedomPtr|
|00001510| 29 0d 2f 2a 0d 4d 6f 6e | 6f 74 6f 6e 69 63 46 69 |)./*.Mon|otonicFi|
|00001520| 74 0d 52 4f 55 54 49 4e | 45 20 54 4f 20 46 49 4e |t.ROUTIN|E TO FIN|
|00001530| 44 20 4d 41 58 49 4d 55 | 4d 20 4c 49 4b 45 4c 49 |D MAXIMU|M LIKELI|
|00001540| 48 4f 4f 44 20 4d 4f 4e | 4f 54 4f 4e 49 43 20 46 |HOOD MON|OTONIC F|
|00001550| 49 54 20 28 4d 4c 4d 46 | 29 0d 47 69 76 65 6e 20 |IT (MLMF|).Given |
|00001560| 61 20 6e 75 6d 62 65 72 | 73 20 6f 66 20 72 69 67 |a number|s of rig|
|00001570| 68 74 20 61 6e 64 20 77 | 72 6f 6e 67 20 72 65 73 |ht and w|rong res|
|00001580| 00 00 00 18 00 01 00 00 | 09 cf 00 00 09 db 0d 4d |........|.......M|
|00001590| 6f 6e 6f 74 6f 6e 69 63 | 46 69 74 00 00 00 00 48 |onotonic|Fit....H|
|000015a0| 00 09 4d 6f 6e 61 63 6f | 00 00 00 00 00 00 00 00 |..Monaco|........|
|000015b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000015c0| 00 00 00 06 00 04 00 2a | 00 03 01 8d 02 7d 00 2d |.......*|.....}.-|
|000015d0| 00 04 01 8c 02 7c aa dc | 69 24 00 00 12 f2 00 00 |.....|..|i$......|
|000015e0| 12 fb 00 00 00 00 00 00 | 00 00 01 00 00 00 01 68 |........|.......h|
|000015f0| 00 00 00 68 00 00 00 3e | 00 ad f0 90 1b ea 00 00 |...h...>|........|
|00001600| 00 1c 00 3e 00 00 4d 50 | 53 52 00 01 00 0a 03 ef |...>..MP|SR......|
|00001610| ff ff 00 00 00 00 00 00 | 00 00 03 ed ff ff 00 00 |........|........|
|00001620| 00 1c 00 ad ef c4 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001630| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001640| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001650| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001660| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00001670| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
+--------+-------------------------+-------------------------+--------+--------+