home *** CD-ROM | disk | FTP | other *** search
- //-------------------------------------------------------------------//
-
- // Synopsis: A matrix associated with the Riemann hypothesis.
-
- // Syntax: A = riemann ( N )
-
- // Description:
-
- // A is an N-by-N matrix for which the Riemann hypothesis is true
- // if and only if
-
- // det(A) = O( N! N^(-1/2+epsilon) ) for every epsilon > 0
- // (`!' denotes factorial).
-
- // A = B[2:N+1; 2:N+1], where
- // B[i;j] = i-1 if i divides j and -1 otherwise.
- // Properties include, with M = N+1:
-
- // Each eigenvalue E(i) satisfies ABS(E(i)) <= M - 1/M.
- // i <= E(i) <= i+1 with at most M-SQRT(M) exceptions.
- // All integers in the interval (M/3, M/2] are eigenvalues.
- //
- // See also REDHEFF.
-
- // Reference:
- // F. Roesler, Riemann's hypothesis as an eigenvalue problem,
- // Linear Algebra and Appl., 81 (1986), pp. 153-198.
-
- // This file is a translation of riemann.m from version 2.0 of
- // "The Test Matrix Toolbox for Matlab", described in Numerical
- // Analysis Report No. 237, December 1993, by N. J. Higham.
-
- //-------------------------------------------------------------------//
-
- riemann = function ( n )
- {
- local (n)
-
- n = n+1;
- i = (2:n)'*ones(1,n-1);
- j = i';
- A = i .* (!mod(j,i)) - ones(n-1,n-1);
-
- return A;
- };
-