home *** CD-ROM | disk | FTP | other *** search
- #
- # This demo is very slow and requires unusually large stack size.
- # Do not attempt to run this demo under MSDOS.
- #
-
- # the function integral_f(x) approximates the integral of f(x) from 0 to x.
- # integral2_f(x,y) approximates the integral from x to y.
- # define f(x) to be any single variable function
- #
- # the integral is calculated as the sum of f(x_n)*delta
- # do this x/delta times (from x down to 0)
- #
- f(x) = exp(-x**2)
- delta = 0.025
- #
- # integral_f(x) takes one variable, the upper limit. 0 is the lower limit.
- # calculate the integral of function f(t) from 0 to x
- integral_f(x) = (x>0)?integral1a(x):-integral1b(x)
- integral1a(x) = (x<=0)?0:(integral1a(x-delta)+delta*f(x))
- integral1b(x) = (x>=0)?0:(integral1b(x+delta)+delta*f(x))
- #
- # integral2_f(x,y) takes two variables; x is the lower limit, and y the upper.
- # claculate the integral of function f(t) from x to y
- integral2_f(x,y) = (x<y)?integral2(x,y):-integral2(y,x)
- integral2(x,y) = (x>y)?0:(integral2(x+delta,y)+delta*f(x))
-
- set title "approximate the integral of functions"
- set samples 50
-
- plot [-5:5] f(x) title "f(x)=exp(-x**2)", 2/sqrt(pi)*integral_f(x) title "erf(x)=2/sqrt(pi)*integral_f(x)"
-
- pause -1 "Hit return to continue"
-
- f(x)=sin(x)
-
- plot [-5:5] f(x) title "f(x)=sin(x)", integral_f(x)
-
- pause -1 "Hit return to continue"
-
- set title "approximate the integral of functions (upper and lower limits)"
-
- f(x)=(x-2)**2-20
-
- plot [-10:10] f(x) title "f(x)=(x-2)**2-20", integral2_f(-5,x)
-
- pause -1 "Hit return to continue"
-
- f(x)=sin(x-1)-.75*sin(2*x-1)+(x**2)/8-5
-
- plot [-10:10] f(x) title "f(x)=sin(x-1)-0.75*sin(2*x-1)+(x**2)/8-5", integral2_f(x,1)
-
- pause -1 "Hit return to continue"
-
- #
- # This definition computes the ackermann. Do not attempt to compute its
- # values for non integral values. In addition, do not attempt to compute
- # its beyond m = 3, unless you want to wait really long time.
-
- ack(m,n) = (m == 0) ? n + 1 : (n == 0) ? ack(m-1,1) : ack(m-1,ack(m,n-1))
-
- set xrange [0:3]
- set yrange [0:3]
-
- set isosamples 4
- set samples 4
-
- set title "Plot of the ackermann function"
-
- splot ack(x, y)
-
- pause -1 "Hit return to continue"
-
- set xrange [-5:5]
- set yrange [-10:10]
- set isosamples 10
- set samples 100
- set key 4,-3
- set title "Min(x,y) and Max(x,y)"
-
- #
- min(x,y) = (x < y) ? x : y
- max(x,y) = (x > y) ? x : y
-
- plot sin(x), x**2, x**3, max(sin(x), min(x**2, x**3))+0.5
-
- pause -1 "Hit return to continue"
-
- #
- # gcd(x,y) finds the greatest common divisor of x and y,
- # using Euclid's algorithm
- # as this is defined only for integers, first round to the nearest integer
- gcd(x,y) = gcd1(rnd(max(x,y)),rnd(min(x,y)))
- gcd1(x,y) = (y == 0) ? x : gcd1(y, x - x/y * y)
- rnd(x) = int(x+0.5)
-
- set samples 59
- set xrange [1:59]
- set auto
- set key
-
- set title "Greatest Common Divisor (for integers only)"
-
- plot gcd(x, 60)
- pause -1 "Hit return to continue"
-
- set xrange [-10:10]
- set yrange [-10:10]
- set auto
- set isosamples 10
- set samples 100
- set title ""
-
-