home *** CD-ROM | disk | FTP | other *** search
- #ifndef __SL_VECTOR_2D_H
- #define __SL_VECTOR_2D_H
-
- #include "slMathTraits.h"
-
- template<class T>
- class vector2D {
- private :
- T data[2];
- public :
- static vector2D<T> ZERO;
- static vector2D<T> X, NEG_X;
- static vector2D<T> Y, NEG_Y;
- public :
- T& operator [](int index);
- const T& operator [](int index)const;
- public :
- vector2D<T>& operator =(const vector2D<T>& v);
- vector2D<T>& operator +=(const vector2D<T>& v);
- vector2D<T>& operator -=(const vector2D<T>& v);
- vector2D<T>& operator *=(T scalar);
- vector2D<T>& operator /=(T scalar);
- public :
- vector2D<T> operator +(const vector2D<T>& v)const;
- vector2D<T> operator -(const vector2D<T>& v)const;
- vector2D<T> operator *(const vector2D<T>& v)const;
- vector2D<T> operator /(const vector2D<T>& v)const;
- vector2D<T> operator *(T scalar)const;
- vector2D<T> operator /(T scalar)const;
- public :
- vector2D<T> operator +(void)const;
- vector2D<T> operator -(void)const;
- public :
- bool operator ==(const vector2D<T>& v)const;
- bool operator !=(const vector2D<T>& v)const;
- bool operator !(void)const;
- public :
- const T* c_ptr(void)const;
- T length(void)const;
- T length_squared(void)const;
- void normalize(void);
- public :
- T dot(const vector2D<T>& v)const;
- T cross(const vector2D<T>& v)const;
- public :
- friend T abs(const vector2D<T>& v);
- friend T dot_product(const vector2D<T>& v1, const vector2D<T>& v2);
- friend T cross_product(const vector2D<T>& v1, const vector2D<T>& v2);
- friend vector2D<T> min(const vector2D<T>& v1, const vector2D<T>& v2);
- friend vector2D<T> max(const vector2D<T>& v1, const vector2D<T>& v2);
- public :
- friend vector2D<T> operator *(T scalar, const vector2D<T>& v);
- friend std::ostream& operator <<(std::ostream& os, const vector2D<T>& v);
- public :
- vector2D();
- vector2D(T x, T y);
- explicit vector2D(T fill);
- explicit vector2D(const T* v);
- vector2D(const vector2D& v);
- ~vector2D();
- };
-
- template<class T> vector2D<T> vector2D<T>::ZERO = vector2D<T>(math_traits<T>::zero(), math_traits<T>::zero());
- template<class T> vector2D<T> vector2D<T>::X = vector2D<T>(math_traits<T>::one(), math_traits<T>::zero());
- template<class T> vector2D<T> vector2D<T>::Y = vector2D<T>(math_traits<T>::zero(), math_traits<T>::one());
- template<class T> vector2D<T> vector2D<T>::NEG_X = vector2D<T>(math_traits<T>::neg_one(), math_traits<T>::zero());
- template<class T> vector2D<T> vector2D<T>::NEG_Y = vector2D<T>(math_traits<T>::zero(), math_traits<T>::neg_one());
-
- template<class T>
- inline vector2D<T>::vector2D()
- {
- }
-
- template<class T>
- inline vector2D<T>::vector2D(T x, T y)
- {
- data[0] = x;
- data[1] = y;
- }
-
- template<class T>
- inline vector2D<T>::vector2D(T fill)
- {
- data[0] = fill;
- data[1] = fill;
- }
-
- template<class T>
- inline vector2D<T>::vector2D(const T* v)
- {
- data[0] = v[0];
- data[1] = v[1];
- }
-
- template<class T>
- inline vector2D<T>::vector2D(const vector2D<T>& v)
- {
- data[0] = v.data[0];
- data[1] = v.data[1];
- }
-
- template<class T>
- inline vector2D<T>::~vector2D()
- {
- }
-
- template<class T>
- inline vector2D<T>& vector2D<T>::operator =(const vector2D<T>& v)
- {
- if(this == &v) return *this;
- data[0] = v.data[0];
- data[1] = v.data[1];
- return *this;
- }
-
- template<class T>
- inline vector2D<T>& vector2D<T>::operator +=(const vector2D<T>& v)
- {
- data[0] += v.data[0];
- data[1] += v.data[1];
- return *this;
- }
-
- template<class T>
- inline vector2D<T>& vector2D<T>::operator -=(const vector2D<T>& v)
- {
- data[0] -= v.data[0];
- data[1] -= v.data[1];
- return *this;
- }
-
- template<class T>
- inline vector2D<T>& vector2D<T>::operator *=(T scalar)
- {
- data[0] *= scalar;
- data[1] *= scalar;
- return *this;
- }
-
- template<class T>
- inline vector2D<T>& vector2D<T>::operator /=(T scalar)
- {
- scalar = math_traits<T>::one()/scalar;
- data[0] *= scalar;
- data[1] *= scalar;
- return *this;
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator +(const vector2D<T>& v)const
- {
- return vector2D<T>(data[0] + v.data[0], data[1] + v.data[1]);
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator -(const vector2D<T>& v)const
- {
- return vector2D<T>(data[0] - v.data[0], data[1] - v.data[1]);
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator *(const vector2D<T>& v)const
- {
- return vector2D<T>(data[0] * v.data[0], data[1] * v.data[1]);
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator /(const vector2D<T>& v)const
- {
- T scalar[2] = {
- math_traits<T>::one()/v.data[0],
- math_traits<T>::one()/v.data[1],
- };
- return vector2D<T>(data[0] * scalar[0], data[1] * scalar[1]);
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator *(T scalar)const
- {
- return vector2D<T>(data[0]*scalar, data[1]*scalar);
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator /(T scalar)const
- {
- scalar = math_traits<T>::one()/scalar;
- return vector2D<T>(data[0]*scalar, data[1]*scalar);
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator +(void)const
- {
- return *this;
- }
-
- template<class T>
- inline vector2D<T> vector2D<T>::operator -(void)const
- {
- return vector2D<T>(-data[0], -data[1]);
- }
-
- template<class T>
- inline bool vector2D<T>::operator ==(const vector2D<T>& v)const
- {
- return ((data[0] == v.data[0]) && (data[1] == v.data[1]));
- }
-
- template<class T>
- inline bool vector2D<T>::operator !=(const vector2D<T>& v)const
- {
- return !(*this == v);
- }
-
- template<class T>
- inline bool vector2D<T>::operator !(void)const
- {
- return ((data[0] == math_traits<T>::zero()) && (data[1] == math_traits<T>::zero()));
- }
-
- template<class T>
- inline T& vector2D<T>::operator [](int index)
- {
- return data[index];
- }
-
- template<class T>
- inline const T& vector2D<T>::operator [](int index)const
- {
- return data[index];
- }
-
- template<class T>
- inline const T* vector2D<T>::c_ptr(void)const
- {
- return &data[0];
- }
-
- template<class T>
- inline T vector2D<T>::length(void)const
- {
- return std::sqrt(data[0]*data[0] + data[1]*data[1]);
- }
-
- template<class T>
- inline T vector2D<T>::length_squared(void)const
- {
- return data[0]*data[0] + data[1]*data[1];
- }
-
- template<class T>
- inline void vector2D<T>::normalize(void)
- {
- T denom = math_traits<T>::one()/length();
- data[0] *= denom;
- data[1] *= denom;
- }
-
- template<class T>
- inline T vector2D<T>::dot(const vector2D<T>& v)const
- {
- return data[0]*v.data[0] + data[1]*v.data[1];
- }
-
- template<class T>
- inline T vector2D<T>::cross(const vector2D<T>& v)const
- {
- return data[0]*v.data[1] - data[1]*v.data[0];
- }
-
- template<class T>
- inline T abs(const vector2D<T>& v)
- {
- return v.length();
- }
-
- template<class T>
- inline T dot_product(const vector2D<T>& v1, const vector2D<T>& v2)
- {
- return v1.dot(v2);
- }
-
- template<class T>
- inline T cross_product(const vector2D<T>& v1, const vector2D<T>& v2)
- {
- return v1.data[0]*v2.data[1] - v1.data[1]*v2.data[0];
- }
-
- template<class T>
- inline vector2D<T> min(const vector2D<T>& v1, const vector2D<T>& v2)
- {
- return vector2D<T>(std::min(v1.data[0], v2.data[0]), std::min(v1.data[1], v2.data[1]));
- }
-
- template<class T>
- inline vector2D<T> max(const vector2D<T>& v1, const vector2D<T>& v2)
- {
- return vector2D<T>(std::max(v1.data[0], v2.data[0]), std::max(v1.data[1], v2.data[1]));
- }
-
- template<class T>
- inline vector2D<T> operator *(T scalar, const vector2D<T>& v)
- {
- return vector2D<T>(v.data[0]*scalar, v.data[1]*scalar);
- }
-
- template<class T>
- inline std::ostream& operator <<(std::ostream& os, const vector2D<T>& v)
- {
- os << "<" << v.data[0] << "," << v.data[1] << "," << v.data[2] << ">";
- return os;
- }
-
- #endif
-