home *** CD-ROM | disk | FTP | other *** search
- /* $NetBSD: fpu_implode.c,v 1.2 1994/11/20 20:52:42 deraadt Exp $ */
-
- /*
- * Copyright (c) 1992, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * This software was developed by the Computer Systems Engineering group
- * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
- * contributed to Berkeley.
- *
- * All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Lawrence Berkeley Laboratory.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Berkeley and its contributors.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
- */
-
- /*
- * FPU subroutines: `implode' internal format numbers into the machine's
- * `packed binary' format.
- */
-
- #include "types.h"
-
- #include "ieee.h"
- #include "reg.h"
-
- #include "fpu_emul.h"
- #include "fpu_arit.h"
-
- /* Conversion from internal format -- note asymmetry. */
- static u_int fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
- static u_int fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
- static u_int fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
- static u_int fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
-
- /*
- * Round a number (algorithm from Motorola MC68882 manual, modified for
- * our internal format). Set inexact exception if rounding is required.
- * Return true iff we rounded up.
- *
- * After rounding, we discard the guard and round bits by shifting right
- * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
- * This saves effort later.
- *
- * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
- * responsibility to fix this if necessary.
- */
- int
- round(register struct fpemu *fe, register struct fpn *fp)
- {
- register u_int m0, m1, m2, m3;
- register int gr, s, ret;
-
- m0 = fp->fp_mant[0];
- m1 = fp->fp_mant[1];
- m2 = fp->fp_mant[2];
- m3 = fp->fp_mant[3];
- gr = m3 & 3;
- s = fp->fp_sticky;
-
- /* mant >>= FP_NG */
- m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
- m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
- m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
- m0 >>= FP_NG;
-
- if ((gr | s) == 0) /* result is exact: no rounding needed */
- goto rounddown;
-
- fe->fe_fpsr |= FPSR_INEX2; /* inexact */
-
- /* Go to rounddown to round down; break to round up. */
- switch (fe->fe_fpcr & FPCR_ROUND) {
-
- case FPCR_NEAR:
- default:
- /*
- * Round only if guard is set (gr & 2). If guard is set,
- * but round & sticky both clear, then we want to round
- * but have a tie, so round to even, i.e., add 1 iff odd.
- */
- if ((gr & 2) == 0)
- goto rounddown;
- if ((gr & 1) || fp->fp_sticky || (m3 & 1))
- break;
- goto rounddown;
-
- case FPCR_ZERO:
- /* Round towards zero, i.e., down. */
- goto rounddown;
-
- case FPCR_MINF:
- /* Round towards -Inf: up if negative, down if positive. */
- if (fp->fp_sign)
- break;
- goto rounddown;
-
- case FPCR_PINF:
- /* Round towards +Inf: up if positive, down otherwise. */
- if (!fp->fp_sign)
- break;
- goto rounddown;
- }
-
- /* Bump low bit of mantissa, with carry. */
- #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
- FPU_ADDS(m3, m3, 1);
- FPU_ADDCS(m2, m2, 0);
- FPU_ADDCS(m1, m1, 0);
- FPU_ADDC(m0, m0, 0);
- #else
- if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
- m0++;
- #endif
- fp->fp_mant[0] = m0;
- fp->fp_mant[1] = m1;
- fp->fp_mant[2] = m2;
- fp->fp_mant[3] = m3;
- return (1);
-
- rounddown:
- fp->fp_mant[0] = m0;
- fp->fp_mant[1] = m1;
- fp->fp_mant[2] = m2;
- fp->fp_mant[3] = m3;
- return (0);
- }
-
- /*
- * For overflow: return true if overflow is to go to +/-Inf, according
- * to the sign of the overflowing result. If false, overflow is to go
- * to the largest magnitude value instead.
- */
- static int
- toinf(struct fpemu *fe, int sign)
- {
- int inf;
-
- /* look at rounding direction */
- switch (fe->fe_fpcr & FPCR_ROUND) {
-
- default:
- case FPCR_NEAR: /* the nearest value is always Inf */
- inf = 1;
- break;
-
- case FPCR_ZERO: /* toward 0 => never towards Inf */
- inf = 0;
- break;
-
- case FPCR_PINF: /* toward +Inf iff positive */
- inf = (sign == 0);
- break;
-
- case FPCR_MINF: /* toward -Inf iff negative */
- inf = sign;
- break;
- }
- return (inf);
- }
-
- /*
- * fpn -> int (int value returned as return value).
- *
- * N.B.: this conversion always rounds towards zero (this is a peculiarity
- * of the SPARC instruction set).
- */
- static u_int
- fpu_ftoi(fe, fp)
- struct fpemu *fe;
- register struct fpn *fp;
- {
- register u_int i;
- register int sign, exp;
-
- sign = fp->fp_sign;
- switch (fp->fp_class) {
-
- case FPC_ZERO:
- return (0);
-
- case FPC_NUM:
- /*
- * If exp >= 2^32, overflow. Otherwise shift value right
- * into last mantissa word (this will not exceed 0xffffffff),
- * shifting any guard and round bits out into the sticky
- * bit. Then ``round'' towards zero, i.e., just set an
- * inexact exception if sticky is set (see round()).
- * If the result is > 0x80000000, or is positive and equals
- * 0x80000000, overflow; otherwise the last fraction word
- * is the result.
- */
- if ((exp = fp->fp_exp) >= 32)
- break;
- /* NB: the following includes exp < 0 cases */
- if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
- /* m68881/2 do not underflow when
- converting to integer */;
- round(fe, fp);
- i = fp->fp_mant[3];
- if (i >= ((u_int)0x80000000 + sign))
- break;
- return (sign ? -i : i);
-
- default: /* Inf, qNaN, sNaN */
- break;
- }
- /* overflow: replace any inexact exception with invalid */
- fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
- return (0x7fffffff + sign);
- }
-
- /*
- * fpn -> single (32 bit single returned as return value).
- * We assume <= 29 bits in a single-precision fraction (1.f part).
- */
- static u_int
- fpu_ftos(fe, fp)
- struct fpemu *fe;
- register struct fpn *fp;
- {
- register u_int sign = fp->fp_sign << 31;
- register int exp;
-
- #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
- #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
-
- /* Take care of non-numbers first. */
- if (ISNAN(fp)) {
- /*
- * Preserve upper bits of NaN, per SPARC V8 appendix N.
- * Note that fp->fp_mant[0] has the quiet bit set,
- * even if it is classified as a signalling NaN.
- */
- (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
- exp = SNG_EXP_INFNAN;
- goto done;
- }
- if (ISINF(fp))
- return (sign | SNG_EXP(SNG_EXP_INFNAN));
- if (ISZERO(fp))
- return (sign);
-
- /*
- * Normals (including subnormals). Drop all the fraction bits
- * (including the explicit ``implied'' 1 bit) down into the
- * single-precision range. If the number is subnormal, move
- * the ``implied'' 1 into the explicit range as well, and shift
- * right to introduce leading zeroes. Rounding then acts
- * differently for normals and subnormals: the largest subnormal
- * may round to the smallest normal (1.0 x 2^minexp), or may
- * remain subnormal. In the latter case, signal an underflow
- * if the result was inexact or if underflow traps are enabled.
- *
- * Rounding a normal, on the other hand, always produces another
- * normal (although either way the result might be too big for
- * single precision, and cause an overflow). If rounding a
- * normal produces 2.0 in the fraction, we need not adjust that
- * fraction at all, since both 1.0 and 2.0 are zero under the
- * fraction mask.
- *
- * Note that the guard and round bits vanish from the number after
- * rounding.
- */
- if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
- /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
- (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
- if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
- return (sign | SNG_EXP(1) | 0);
- if (fe->fe_fpsr & FPSR_INEX2)
- /* mc68881/2 don't underflow when converting */;
- return (sign | SNG_EXP(0) | fp->fp_mant[3]);
- }
- /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
- (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
- #ifdef DIAGNOSTIC
- if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
- /* panic("fpu_ftos"); */
- #endif
- if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
- exp++;
- if (exp >= SNG_EXP_INFNAN) {
- /* overflow to inf or to max single */
- fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
- if (toinf(fe, sign))
- return (sign | SNG_EXP(SNG_EXP_INFNAN));
- return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
- }
- done:
- /* phew, made it */
- return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
- }
-
- /*
- * fpn -> double (32 bit high-order result returned; 32-bit low order result
- * left in res[1]). Assumes <= 61 bits in double precision fraction.
- *
- * This code mimics fpu_ftos; see it for comments.
- */
- static u_int
- fpu_ftod(fe, fp, res)
- struct fpemu *fe;
- register struct fpn *fp;
- u_int *res;
- {
- register u_int sign = fp->fp_sign << 31;
- register int exp;
-
- #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
- #define DBL_MASK (DBL_EXP(1) - 1)
-
- if (ISNAN(fp)) {
- (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
- exp = DBL_EXP_INFNAN;
- goto done;
- }
- if (ISINF(fp)) {
- sign |= DBL_EXP(DBL_EXP_INFNAN);
- res[1] = 0;
- return (sign);
- }
- if (ISZERO(fp)) {
- res[1] = 0;
- return (sign);
- }
-
- if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
- (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
- if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
- res[1] = 0;
- return (sign | DBL_EXP(1) | 0);
- }
- if (fe->fe_fpsr & FPSR_INEX2)
- /* mc68881/2 don't underflow when converting */;
- exp = 0;
- goto done;
- }
- (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
- if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
- exp++;
- if (exp >= DBL_EXP_INFNAN) {
- fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
- if (toinf(fe, sign)) {
- res[1] = 0;
- return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
- }
- res[1] = ~0;
- return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
- }
- done:
- res[1] = fp->fp_mant[3];
- return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
- }
-
- /*
- * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
- * order result left in res[1] & res[2]). Assumes == 64 bits in extended
- * precision fraction.
- *
- * This code mimics fpu_ftos; see it for comments.
- */
- static u_int
- fpu_ftox(fe, fp, res)
- struct fpemu *fe;
- register struct fpn *fp;
- u_int *res;
- {
- register u_int sign = fp->fp_sign << 31;
- register int exp;
-
- #define EXT_EXP(e) ((e) << 16)
- #define EXT_MASK (EXT_EXP(1) - 1)
-
- if (ISNAN(fp)) {
- (void) fpu_shr(fp, FP_NMANT - 1 - EXT_FRACBITS);
- exp = EXT_EXP_INFNAN;
- goto done;
- }
- if (ISINF(fp)) {
- sign |= EXT_EXP(EXT_EXP_INFNAN);
- res[1] = res[2] = 0;
- return (sign);
- }
- if (ISZERO(fp)) {
- res[1] = res[2] = 0;
- return (sign);
- }
-
- if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
- /* I'm not sure about this <=... exp==0 doesn't mean
- it's a denormal in extended format */
- (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
- if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(1)) {
- res[1] = res[2] = 0;
- return (sign | EXT_EXP(1) | 0);
- }
- if (fe->fe_fpsr & FPSR_INEX2)
- /* mc68881/2 don't underflow */;
- exp = 0;
- goto done;
- }
- (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
- if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(2))
- exp++;
- if (exp >= EXT_EXP_INFNAN) {
- fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
- if (toinf(fe, sign)) {
- res[1] = res[2] = 0;
- return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
- }
- res[1] = res[2] = ~0;
- return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
- }
- done:
- res[1] = fp->fp_mant[2];
- res[2] = fp->fp_mant[3];
- return (sign | EXT_EXP(exp));
- }
-
- /*
- * Implode an fpn, writing the result into the given space.
- */
- void
- fpu_implode(fe, fp, type, space)
- struct fpemu *fe;
- register struct fpn *fp;
- int type;
- register u_int *space;
- {
- fe->fe_fpsr &= ~FPSR_EXCP;
-
- switch (type) {
- case FTYPE_LNG:
- space[0] = fpu_ftoi(fe, fp);
- break;
-
- case FTYPE_SNG:
- space[0] = fpu_ftos(fe, fp);
- break;
-
- case FTYPE_DBL:
- space[0] = fpu_ftod(fe, fp, space);
- break;
-
- case FTYPE_EXT:
- /* funky rounding precision options ?? */
- space[0] = fpu_ftox(fe, fp, space);
- break;
-
- default:
- #ifdef DIAGNOSTIC
- panic("fpu_implode");
- #endif
-
- }
- }
-