home *** CD-ROM | disk | FTP | other *** search
- \e
- \precision=40
- pi
- \precision=20
- o(x^12)
- 5/3+o(127^5)
- \\ A
- abs(-0.01)
- acos(0.5)
- acosh(3)
- acurve=initell([0, 0, 1, -1, 0])
- apoint=[2, 2]
- isoncurve(acurve, apoint)
- addell(acurve, apoint, apoint)
- adj([1, 2; 3, 4])
- agm(1, 2)
- agm(1 + o(7^5), 8 + o(7^5))
- algdep(2 * cos(2 * pi / 13), 6)
- anell(acurve, 100)
- apell(acurve,10007)
- apell2(acurve,10007)
- apol=x^3+5*x+1
- apprpadic(apol,1+O(7^8))
- apprpadic(x^3+5*x+1,mod(x*(1+O(7^8)),x^2+x-1))
- 4 * arg(3+3*i)
- 3 * asin(sqrt(3)/2)
- asinh(0.5)
- assmat(x^5-12*x^3+0.0005)
- 3 * atan(sqrt(3))
- atanh(0.5)
- \\ B
- base(x^3+4*x+5)
- bernreal(12)
- bernvec(6)
- bezout(123456789,987654321)
- bigomega(12345678987654321)
- bin(1.1,5)
- binary(65537)
- bittest(10^100,100)
- boundcf(pi,5)
- boundfact(40!+1,100000)
- \\ C
- ceil(-2.5)
- centerlift(mod(456,555))
- cf(pi)
- cf2([1,3,5,7,9],(exp(1)-1)/(exp(1)+1))
- changevar(x + y, [z, t])
- char([1, 2; 3, 4], z)
- char(mod(x^2+x+1,x^3+5*x+1),z)
- char1([1, 2; 3, 4], z)
- char2(mod(1,8191)*[1, 2; 3, 4], z)
- acurve = chell(acurve, [-1, 1, 2, 3])
- chinese(mod(7, 15), mod(13, 21))
- apoint = chptell(apoint, [-1, 1, 2, 3])
- isoncurve(acurve, apoint)
- classno(-12391)
- classno(1345)
- classno2(-12391)
- classno2(1345)
- coeff(sin(x),7)
- compo(1+o(7^4), 3)
- compose(qfi(2, 1, 3), qfi(2, 1, 3))
- comprealraw(qfr(5,3,-1,0.),qfr(7,1,-1,0.))
- concat([1, 2], [3, 4])
- conj(1+i)
- %_
- content([123, 456, 789, 234])
- convol(sin(x), x * cos(x))
- cos(1)
- cosh(1)
- cvtoi(1.7)
- cyclo(105)
- \\ D
- denom(12345/54321)
- deriv((x + y)^5, y)
- ((x+y)^5)'
- det([1, 2, 3; 1, 5, 6; 9, 8, 7])
- det2([1, 2, 3; 1, 5, 6; 9, 8, 7])
- detr([1, 2, 3; 1, 5, 6; 9, 8, 7])
- dilog(0.5)
- disc(x^3+4*x+5)
- discf(x^3+4*x+5)
- divisors(8!)
- divres(345, 123)
- divres(x^7 - 1, x^5 + 1)
- divsum(8!,x,x)
- \\ E
- eigen([1, 2, 3; 4, 5, 6; 7, 8, 9])
- eint1(2)
- erfc(2)
- eta(q)
- euler
- z = y; y = x; eval(z)
- exp(1)
- extract([1,2,3,4,5,6,7,8,9,10], 1000)
- \\ F
- 10!
- fact(10)
- lift(lift(factfq(x^3+x^2+x-1,3,t^3+t^2+t-1)))
- factmod(x^11+1, 7)
- factor(17!+1)
- p=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
- fa=[11699, 6; 2392997, 2; 4987333019653, 2]
- factoredbase(p,fa)
- factoreddiscf(p,fa)
- \precision=40
- factoredpolred(p,fa)
- factoredpolred2(p,fa)
- \precision=20
- lift(factornf(y^3+y^2-2*y-1,x^3+x^2-2*x-1))
- factorpadic(apol,7,8)
- factpol(x^15-1, 3)
- factpol(x^15-1, 0)
- factpol2(x^15-1, 0)
- fibo(100)
- floor(-1/2)
- floor(-2.5)
- for(x=1,5,print(x!))
- fordiv(10,x,print(x))
- forprime(p=1,30,print(p))
- forstep(x=0,pi,pi/12,print(sin(x)))
- frac(-2.7)
- \\ G
- galois(x^6-3*x^2-1)
- galoisconj(x^6+108)
- gamh(10)
- gamma(10.5)
- gauss(hilbert(10),[1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
- gcd(12345678, 87654321)
- globalred(acurve)
- k=4;goto(k%2);label(0);print("even");goto(3);label(1);print("odd");label(3);
- \\ H
- hclassno(2000003)
- hell(acurve, apoint)
- hell2(acurve, apoint)
- hell3(acurve, apoint)
- hermite(1/hilbert(7))
- hess(hilbert(7))
- hilb(2/3, 3/4, 5)
- hilbert(5)
- hilbp(mod(5,7),mod(6, 7))
- hvector(10,x,1/x)
- hyperu(1,1,1)
- \\ I
- i^2
- idmat(5)
- if(3 < 2, print("bof"), print("ok"));
- imag(2+3*i)
- image([1,3,5;2,4,6;3,5,7])
- incgam(2,1)
- incgam1(2,1)
- incgam2(2,1)
- incgam3(2,1)
- incgam4(4,1,6)
- indexrank([1,1,1;1,1,1;1,1,2])
- indsort([8, 7, 6, 5])
- initalg(x^5-5*x^4+8*x^3-4*x^2-1)
- initell([0,0,0,-1,0])
- initell2([0,0,0,0,-1])
- integ(sin(x), x)
- intersect([1,2;3,4;5,6],[2,3;7,8;8,9])
- \precision=9
- intgen(x=0,pi,sin(x))
- sqr(2*intgen(x=0,4,exp(-x^2)))
- 4*intinf(x=1,10000,1/(1+x^2))
- intnum(x = -0.999, 0.999, 1/sqrt(1 - x^2))
- 2 * intopen(x = 0, 100, sin(x)/x)
- \precision=28
- inverseimage([1,1;2,3;5,7],[2,2,6]~)
- isfund(12345)
- isincl(x^2+1,x^4+1)
- isisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
- isprime(12345678901234567)
- ispsp(73!+1)
- isqrt(10!^2+1)
- issqfree(123456789876543219)
- issquare(12345678987654321)
- \\ J
- jacobi(hilbert(6))
- jbesselh(1,1)
- jell(i)
- \\ K
- kbessel(1 + i, 1)
- kbessel2(1 + i, 1)
- x
- y
- ker(matrix(4,4,x,y,x/y))
- keri(matrix(4,4,x,y,x+y))
- kerint(matrix(4,4,x,y,x*y))
- kerint1(matrix(4,4,x,y,x*y))
- kerint2(matrix(4,6,x,y,2520/(x+y)))
- kerr(matrix(4,4,x,y,sin(x+y)))
- f(u)=u+1;
- print(f(5)); kill(f);
- f=12
- kro(5,7)
- kro(3,18)
- \\ L
- k=4;goto(k%2);label(0);print("even");goto(3);label(1);print("odd");label(3);
- laplace(x*exp(x*y)/(exp(x)-1))
- lcm(15,-21)
- length(divisors(1000))
- legendre(10)
- lex([1,3],[1,3,5])
- lexsort([[1,5],[2,4],[1,5,1],[1,4,2]])
- lift(chinese(mod(7,15),mod(4,21)))
- lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
- lindep2([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],40)
- m=1/hilbert(7)
- mp=concat(m,idmat(7))
- lll(m)
- lll1(m)
- lllgram(m)
- lllgram1(m)
- lllgramint(m)
- lllgramkerim(mp~*mp)
- lllint(m)
- lllkerim(mp)
- lllrat(m)
- \precision=100
- ln(2)
- lngamma(10^50*i)
- \precision=2000
- log(2)
- logagm(2)
- \precision=9
- bcurve=initell([0,0,0,-3,0])
- localred(bcurve,2)
- ccurve=initell([0,0,-1,-1,0])
- l=lseriesell(ccurve,2,-37,1)
- lseriesell(ccurve,2,-37,1.2)-l
- \\ M
- mat(concat(vector(4,x,x)~,vector(4,x,10+x)~))
- matell(initell([0,0,0,-17,0]),[[-1,4],[-4,2]])
- matextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
- matinvr(1.*hilbert(7))
- matsize([1,2;3,4;5,6])
- matrix(5,5,x,y,gcd(x,y))
- matrixqz([1,3;3,5;5,7],0)
- matrixqz2([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0])
- matrixqz3([1,3;3,5;5,7])
- max(2,3)
- min(2,3)
- minim([2,1;1,2])
- mod(-12,7)
- modp(-12,7)
- mod(10873,49649)^-1
- modreverse(mod(x^2+1,x^3-x-1))
- mu(3*5*7*11*13)
- \\ N
- newtonpoly(x^4+3*x^3+27*x^2+9*x+81,3)
- nextprime(100000000000000000000000)
- norm(1+i)
- norm(mod(x+5,x^3+x+1))
- norml2(vector(10,x,x))
- nucomp(qfi(2,1,9),qfi(4,3,5),3)
- form=qfi(2,1,9);nucomp(form,form,3)
- numdiv(2^99*3^49)
- numer((x+1)/(x-1))
- nupow(form,111)
- \\ O
- 1/(1+x)+o(x^20)
- omega(100!)
- ordell(acurve, 1)
- order(mod(33,2^16+1))
- ordred(x^3-12*x+45*x-1)
- \\ P
- pascal(8)
- permutation(7,1035)
- pf(-44,3)
- phi(257^2)
- pi
- plot(x=-5,5,sin(x))
- \\ ploth(x=-5,5,sin(x))
- \\ ploth2(t=0,2*pi,[sin(5*t),sin(7*t)])
- pnqn([2,6,10,14,18,22,26])
- pnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
- pointell(acurve,zell(acurve,apoint))
- polint([0,2,3],[0,4,9],5)
- polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
- polred2(x^4-28*x^3-458*x^2+9156*x-25321)
- polsym(x^17-1,17)
- poly(sin(x),x)
- polylog(5,0.5)
- polylog(-4,t)
- polylogd(5,0.5)
- polylogdold(5,0.5)
- polylogp(5,0.5)
- poly([1,2,3,4,5],x)
- polyrev([1,2,3,4,5],x)
- powell(acurve,10,apoint)
- powrealraw(qfr(5,3,-1,0.),3)
- pprint((x-12*y)/(y+13*x));
- pprint([1,2;3,4])
- pprint1(x+y);pprint(x+y);
- \precision=100
- pi
- prec(pi,20)
- \precision=20
- prime(100)
- primes(100)
- forprime(p=2,100,print(p, " ", lift(primroot(p))))
- print((x-12*y)/(y+13*x));
- print([1,2;3,4])
- print1(x+y);print1(" egale ");print(x+y);
- prod(1,k=1,10,1+1/k!)
- prod(1.,k=1,10,1+1/k!)
- pi^2/6*prodeuler(p=2,10000,1-p^-2)
- prodinf(n=0,(1+2^-n)/(1+2^(-n+1)))
- prodinf1(n=0,-2^-n/(1+2^(-n+1)))
- psi(1)
- \\ Q
- quadgen(-11)
- quadpoly(-11)
- \\ R
- smith(matrix(5,5,j,k,random()))
- rank(matrix(5,5,x,y,x+y))
- print1("give a value for s? ");s=read();print(1/s)
- 37.
- real(5-7*i)
- recip(3*x^7-5*x^3+6*x-9)
- redcomp(qfi(3,10,12))
- redreal(qfr(3,10,-20,1.5))
- redrealnod(qfr(3,10,-20,1.5),18)
- regula(17)
- kill(y);print(x+y);reorder([x, y]); print(x+y);
- resultant(x^3-1,x^3+1)
- resultant2(x^3-1.,x^3+1.)
- reverse(tan(x))
- rhoreal(qfr(3,10,-20,1.5))
- rhorealnod(qfr(3,10,-20,1.5),18)
- rndtoi(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
- rootmod(x^16-1,41)
- rootpadic(x^4+1,41,6)
- roots(x^5-1)
- rootslong(x^4-1000000000000000000000)
- round(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
- rounderror(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
- \\ S
- q*series(anell(acurve,100),q)
- shift(1,50)
- shift([3,4,-11,-12],-2)
- shiftmul([3,4,-11,-12],-2)
- sigma(100)
- sigmak(2,100)
- sigmak(-3,100)
- sign(-1)
- sign(0)
- sign(0.)
- signat(hilbert(5)-0.11*idmat(5))
- simplify(((x+i+1)^2-x^2-2*x*(i+1))^2)
- sin(pi/6)
- sinh(1)
- size([1.3*10^5,2*i*pi*exp(4*pi)])
- smallbase(x^3+4*x+5)
- smalldiscf(x^3+4*x+5)
- smallfact(100!+1)
- smallinitell([0,0,0,-17,0])
- smallpolred(x^4+576)
- smallpolred2(x^4+576)
- smith(1/hilbert(6))
- solve(x=1,4,sin(x))
- sort(vector(17,x,5*x%17))
- sqr(1+o(2))
- sqred(hilbert(5))
- sqrt(13+o(127^12))
- srgcd(x^10-1,x^15-1)
- apol=0.3+legendre(10)
- sturm(apol)
- sturmpart(apol,0.91,1)
- subell(initell([0,0,0,-17,0]),[-1,4],[-4,2])
- subst(sin(x),x,y)
- subst(sin(x),x,x+x^2)
- sum(0,k=1,10,2^-k)
- sum(0.,k=1,10,2^-k)
- \precision=20
- 4*sumalt(n=0,(-1)^n/(2*n+1))
- suminf(n=1,2^-n)
- 6/pi^2*sumpos(n=1,n^-2)
- supplement([1,3;2,4;3,6])
- \\ T
- sqr(tan(pi/3))
- tanh(1)
- taylor(y/(x-y),y)
- tchebi(10)
- tchirnhausen(x^5-x-1)
- teich(7+o(127^12))
- texprint((x+y)^3/(x-y)^2)
- theta(0.5,3)
- thetanullk(0.5,7)
- trace(1+i)
- trace(mod(x+5,x^3+x+1))
- trans(vector(2,x,x))
- %*%~
- trunc(-2.7)
- trunc(sin(x^2))
- type(mod(x,x^2+1))
- \\ U
- unit(17)
- n=33;until(n==1,print1(n," ");if(n%2,n=3*n+1,n=n/2));print(1)
- \\ V
- valuation(6^10000-1,5)
- vec(sin(x))
- vecsort([[1,8],[2,5],[3,6],[4,1]],2)
- \\ W
- wf(i)
- wf2(i)
- m=5; while(m<20, print1(m, " ");m=m+1); print()
- \\ Z
- zell(acurve, apoint)
- zeta(3)
- zeta(0.5+14.1347251*i)
-
-