home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!gatech!paladin.american.edu!howland.reston.ans.net!zaphod.mps.ohio-state.edu!moe.ksu.ksu.edu!ux1.cso.uiuc.edu!news.cso.uiuc.edu!dan
- From: guyard@dollar.unice.fr (Frederic Guyard)
- Subject: Generalisation for Puiseux theorem ?
- Message-ID: <1k0p4iINN4ti@taloa.unice.fr>
- Originator: dan@symcom.math.uiuc.edu
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: University of Nice Sophia-Antipolis
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Mon, 25 Jan 1993 13:14:58 GMT
- Lines: 16
-
-
- Hi,
-
- Is there some generalisation for Puiseux Theorem ?
-
- With Puiseux theorem, you know than you can determine branches of solution
- for P(x,y)=0 i.e. you can find parametrisation y(x) with P(x,y(x))=0.
-
- Is there some generalisation if there is 3 variables : P(x,y,z)=0. For an
- example, can i find a parametrisation : P(x,y,z(x,y)).
-
- In the same way, is there a generalisation for Newton Polyhedron method
- with 3 variables ?
-
- Thank ..
-
-