home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!charon.amdahl.com!pacbell.com!decwrl!sdd.hp.com!zaphod.mps.ohio-state.edu!darwin.sura.net!mojo.eng.umd.edu!delliott
- From: delliott@eng.umd.edu (David L. Elliott)
- Newsgroups: sci.math
- Subject: Re: Smooth manifolds and function extensions
- Date: 27 Jan 1993 04:24:18 GMT
- Organization: Project GLUE, University of Maryland, College Park
- Lines: 27
- Message-ID: <1k52piINN77r@mojo.eng.umd.edu>
- References: <2828@eagle.ukc.ac.uk>
- NNTP-Posting-Host: newra.src.umd.edu
-
- In article <2828@eagle.ukc.ac.uk> mrw@ukc.ac.uk (M.R.Watkins) writes:
- >Given a manifold M with a smooth (C-infinity) structure, it is possible to
- >define E(M), the linear space of all smooth functions on M. Now is it
- >possible to reconstruct the smooth structure (that is the atlas on M) from
- >the knowledge of E(M) alone?
- >
-
- ...
- Best result I've heard of is that the ring of real-analytic (C-omega)
- functions F(M) determines M up to C-omega diffeomorphism, and may be found in
- S. B. Myers, "Algebras of differentiable functions," Proc. Am. Math. Soc.
- Vol. 5 (1954) 917-922,
- cited in T. Nagano's paper on transitive Lie algebras, J.Math.Soc.Japan
- Vol. 18 (1969) 398-404. I have not see Myers' paper, so don't know if
- the result holds for C-infinity... an example where it does not would be
- interesting, too!
-
-
-
-
-
-
- --
- David L. Elliott delliott@src.umd.edu
- Institute for Systems Research/ A.V. Williams Building
- University of Maryland/ College Park, MD 20742
-
-