home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!europa.eng.gtefsd.com!emory!swrinde!zaphod.mps.ohio-state.edu!howland.reston.ans.net!paladin.american.edu!news.univie.ac.at!hp4at!mcsun!julienas!corton!geocub!loeb
- From: loeb@greco-prog.fr (Daniel LOEB)
- Newsgroups: sci.math
- Subject: Re: Combinatorial Problems
- Message-ID: <1993Jan27.141536.28877@greco-prog.fr>
- Date: 27 Jan 93 14:15:36 GMT
- References: <93022.114846DCC117@psuvm.psu.edu> <1993Jan23.121800.2214@infodev.cam.ac.uk>
- Reply-To: loeb@geocub.UUCP (Daniel LOEB)
- Organization: Greco Programmation du CNRS
- Lines: 37
-
- >In article <93022.114846DCC117@psuvm.psu.edu> <DCC117@psuvm.psu.edu>
- >posed the following problem:
- > A 6-by-6 chessboard is perfectly covered with 18 dominoes.
- > Prove that it is possible to cut it either horizontally or
- > vertically into two non-empty pieces without cutting through
- > a domino, that is, prove there must be a fault-line.
-
- Gabor Megyesi gave a proof.
- His proof also shows that there are no 2xn, or 4xn, or 6x1, or 6x3, or
- fault-less rectangles.
-
- On the other hand here is a 6x5 fault-less rectangle:
- aabcc
- debff
- dehhg
- ijjkg
- innkl
- mmool
-
- And here is a 6x8 fault-less rectange:
- aacced
- hbbfed
- hijfgg
- kijllm
- knwxxm
- onwvuu
- oqqvst
- pprrst
-
- We can now ask the following question. For what i (even) and what j is
- there a fault-less rectangle of size i x j.
-
- --
-
- Yours, Daniel Loeb loeb@geocub.greco-prog.fr
- HOME 150, cours Victor-Hugo; Appt D45; 33000 Bordeaux France
- WORK LABRI; Universite de Bordeaux I; 33405 Talence Cedex France
-