home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!enterpoop.mit.edu!eru.mt.luth.se!kth.se!vaxkab.lne.kth.se!myrberger
- From: myrberger@e.kth.se (Johan Myrberger)
- Newsgroups: sci.math
- Subject: BCH error correcting code parity check matrix
- Message-ID: <1993Jan22.161120.9020@kth.se>
- Date: 22 Jan 93 16:11:20 GMT
- Sender: usenet@kth.se (Usenet)
- Reply-To: myrberger@e.kth.se (Johan Myrberger)
- Organization: School of EE, Royal Institute of Technolgy
- Lines: 49
- Nntp-Posting-Host: peta.e.kth.se
-
- Hello,
-
- is there someone out there who can help me with this?
-
- I'm trying to construct a parity check matrix for a BCH-code.
- The code is a BCH(31,21) with g(x)=(x^5+x^2+1)(x^5+x^4+x^3+x^2+1), and
- has a dmin of 5.
-
- I understand that one way to construct the parity check matrix (and the way
- I'm interested in) is to use a primitive element of GF(32), alpha.
- The matrix would look like this:
-
- __ __
- ! alpha^0 alpha^1 alpha^2 ..... alpha^29 alpha^30 !
- H= ! !
- ! alpha^0 alpha^3 alpha^6 ..... alpha^87 alpha^90 !
- -- --
-
- After reducing the powers of alpha using the fact that alpha^31 = alpha^0
- and replacing alpha^a with the binary representation
- I get the following matrix:
-
- __ __
- ! 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 !
- ! 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 !
- ! 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 !
- ! 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 !
- ! 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 !
- H= ! !
- ! 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 !
- ! 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 !
- ! 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 !
- ! 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 !
- ! 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 !
- -- --
-
- T
- The problem is that with this matrix the relation cH = 0 don't hold!
- (c being a codeword)
-
- Why is this? What am I missing?
-
- Perhaps there's something wrong with the binary representation of alpha^i?
-
- If someone can give me a hint please MAIL me!
-
- Johan Myrberger
-
- MAIL: myrberger@e.kth.se
-