home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!news.univie.ac.at!blekul11!frmop11!barilvm!aristo.tau.ac.il!jhusdhui
- From: jhusdhui@math.tau.ac.il (Gurel-gurevitch Ori)
- Subject: Re: Alephs again
- Message-ID: <1993Jan22.090115.10025@aristo.tau.ac.il>
- Sender: usenet@aristo.tau.ac.il (USENET)
- Organization: School of Math & CS - Tel Aviv University , Tel Aviv , ISRAEL.
- X-Newsreader: Tin 1.1 PL5
- Date: Fri, 22 Jan 1993 09:01:15 GMT
- Lines: 48
-
-
- n case you dont know 2^aleph0=aleph1 is the continum hypothesis and
- of course, is independent of ZFC. There is however a sign for 2^aleph0
-
- it is just aleph (without any index). sometimes when dealing with
- models
- without GCH we use beit1 to represent 2^aleph0 beit2 is 2^beit1 etc,
- etc
- (beit0 is aleph0).
-
- the enumeration given by Dennis Paul Himes is good for any countable
- set
- wich is already well-ordered (i.e. enumerated) but in general you
- cannot
- choose an enumeration for a given countale set without using AC so
- this
- is not a proof.
-
- Allen K. writes:
- For instance, 2^{\aleph_0} may
- be \aleph_1, \aleph_2, or anything larger, EXCEPT \aleph_\omega
- (the next cardinality after \aleph_1, \aleph_2, ...). But it can be
- \aleph_{\omega+1}, \aleph_{\omega+2}, and so on.
-
- this is not quite true: as far as I know 2^aleph0 (aleph) can be any
- cardinal with cofinality greater then omega. this means that aleph
- cant
- be aleph_omega but neither aleph_(omega*2) aleph_(omega*n)
- aleph_(omega^2)
- and not even aleph_(aleph_(omega)). the proof to this statment
- follows
- immediatly from konig's lemma which state that A^B wheras B>=cf(A) is
- greater then A(not greater or equal). since
- (2^aleph0)^aleph0 = 2^(aleph0*aleph0) = 2^aleph0
- so cf(2^aleph0)>aleph0.
- J.
-
-
-
-
-
-
-
- --
-
- Gurel-Gurevitch Ori jhusdhui@libra.math.tau.ac.il
-
-
-