home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!cs.utexas.edu!asuvax!ukma!tulane!uflorida!usf.edu!gauss!eclark
- From: eclark@gauss.math.usf.edu. (Edwin Clark)
- Newsgroups: sci.math
- Subject: Re: Compositum of quadratic fields
- Message-ID: <1993Jan18.044419.26095@ariel.ec.usf.edu>
- Date: 18 Jan 93 04:44:19 GMT
- References: <1j4mh2INN2t3@uwm.edu>
- Sender: news@ariel.ec.usf.edu (News Admin)
- Organization: Univ. of South Florida, Math Department
- Lines: 32
-
- In article <1j4mh2INN2t3@uwm.edu> litow@csd4.csd.uwm.edu (Bruce E Litow) writes:
- >If p_1,...,p_n are distinct primes, what is a good upper bound on
- >the degree of Q(sqrt(p_1),...,sqrt(p_n))? Clearly one can get a
- >bound via cyclotomic extensions but that seems horrendous, or is
- >it best possible?
- >
- >Please email responses to
- >
- >
- >Bruce Litow
- >Computing Services Division
- >P.O. Box 413
- >Univ. Wisconsin-Milwaukee, Milwaukee, WI, 53201
- >litow@csd4.csd.uwm.edu
- >--
- >Bruce Litow
- >Computing Services Division
- >P.O.Box 413, University of Wisconsin-Milwaukee, 53201
- >414 229 6431 litow@csd4.csd.uwm.edu
-
-
- The exact degree is 2^n. See the Monthly article by RL Roth
- "On extensions of Q by square roots", vol 78 (4) 1971
- pp 392-393.
-
-
-
- --
- W. Edwin Clark
- Mathematics Department
- University of South Florida
- Tampa, FL 33620-5700
-