home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!stanford.edu!nntp.Stanford.EDU!ilan
- From: ilan@leland.Stanford.EDU (ilan vardi)
- Subject: Re: Distribution of primes mod 4
- Message-ID: <1993Jan21.212120.251@leland.Stanford.EDU>
- Sender: news@leland.Stanford.EDU (Mr News)
- Organization: DSG, Stanford University, CA 94305, USA
- References: <PCL.93Jan21100948@rhodium.ox.ac.uk> <ARA.93Jan21081239@camelot.ai.mit.edu> <1993Jan21.141800.17997@linus.mitre.org>
- Date: Thu, 21 Jan 93 21:21:20 GMT
- Lines: 15
-
- In article <1993Jan21.141800.17997@linus.mitre.org> bs@gauss.mitre.org (Robert D. Silverman) writes:
- >
- >let u(x) = #{n <= x; pi(n,1,4) < pi(n,3,4)}
- >
- >Then one would expect that u(x) = x/2 for almost all x. That is to say,
- >for large x, about 1/2 the integers less than x have pi(n,1,4) < pi(n,3,4)
- >and for about 1/2 the integers the inequality is reversed. This can be
- >made more precise;
- >
- >u(x) = x/2 + O(x^{1-epsilon}) for any fixed epsilon.
-
-
- Yo! This is clearly wrong, and you can't do better than epsilon = 1/2
- (which is the generalized Riemann Hypothesis). In other words
- epsilon <= 1/2 in the above term.
-