home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.stat
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!magnus.acs.ohio-state.edu!usenet.ins.cwru.edu!agate!ames!purdue!mentor.cc.purdue.edu!pop.stat.purdue.edu!hrubin
- From: hrubin@pop.stat.purdue.edu (Herman Rubin)
- Subject: Re: Robust chi-squared routine?
- Message-ID: <BzMDCz.JrM@mentor.cc.purdue.edu>
- Sender: news@mentor.cc.purdue.edu (USENET News)
- Organization: Purdue University Statistics Department
- References: <1g8evvINNqc0@network.ucsd.edu> <CTHOMBOR.92Dec18122658@tern.lcs.mit.edu>
- Date: Mon, 21 Dec 1992 17:17:22 GMT
- Lines: 18
-
- In article <CTHOMBOR.92Dec18122658@tern.lcs.mit.edu> cthombor@theory.lcs.mit.edu (Clark D. Thomborson) writes:
-
- > From: mbk@gibbs.ucsd.edu (Matt Kennel)
-
- > Is a chisquared test appropriate for a situation where the
- > number of bins is very large, but the expected value per bin is
- > quite a bit smaller than 1?
-
- I would raise the question of whether the chi-squared test is ever a
- good procedure to use if there is a large number of bins. I do not
- mean the chi-squared approximation, but using that test itself. One
- should choose the test according to the evaluation of the alternatives,
- and there are usually far more powerful ones.
- --
- Herman Rubin, Dept. of Statistics, Purdue Univ., West Lafayette IN47907-1399
- Phone: (317)494-6054
- hrubin@snap.stat.purdue.edu (Internet, bitnet)
- {purdue,pur-ee}!snap.stat!hrubin(UUCP)
-