home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!munnari.oz.au!spool.mu.edu!agate!stanford.edu!rutgers!news.cs.indiana.edu!usenet.ucs.indiana.edu!bronze.ucs.indiana.edu!dhart
- From: dhart@bronze.ucs.indiana.edu (dave hart)
- Newsgroups: sci.math.num-analysis
- Subject: Re: Chebyshev vs. Least Squares Polynomials
- Message-ID: <C02wr7.50A@usenet.ucs.indiana.edu>
- Date: 30 Dec 92 15:37:55 GMT
- References: <1992Dec2.170529.24897@news2.cis.umn.edu> <BzEyyF.GE0@usenet.ucs.indiana.edu>
- Sender: news@usenet.ucs.indiana.edu (USENET News System)
- Organization: Indiana University
- Lines: 7
- Nntp-Posting-Host: bronze.ucs.indiana.edu
-
- > The idea of "least squares" is the same as orthogonal projection--
- >"the shortest distance between a point and a line..." This is tied up
- >with geometry, ie a metric [inner product]. The Chebyshev polynomials
- >form an orthonormal basis [q.v.] for the L^2 metric; other functions
- >form orthonormal bases for other metrics.
- >
- _if_ you measure with dx/sqrt(1-x^2) [what else?]. [oops!:-]
-