home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!not-for-mail
- From: edgar@function.mps.ohio-state.edu (Gerald Edgar)
- Newsgroups: sci.math
- Subject: Re: complemented subspaces!
- Date: 30 Dec 1992 13:38:42 -0500
- Organization: The Ohio State University, Dept. of Math.
- Lines: 16
- Message-ID: <1hsqbiINN79t@function.mps.ohio-state.edu>
- References: <amirishs.725734227@acf9>
- NNTP-Posting-Host: function.mps.ohio-state.edu
-
- In article <amirishs.725734227@acf9> amirishs@acf9.nyu.edu (shaahin amiri sharifi) writes:
- >Is that true, every closed subspace of C[0,1], with sup-norm topology,
- >has a closed complement?
-
-
- Certainly not. The only (up to isomorphism) Banach spaces where every
- closed subspace has a closed complement are the Hilbert spaces.
- Lindenstrauss & Tzafriri, Israel Journal 9 (1971) 263--269.
-
- I believe the first example of a non-complemented subspace was a subspace
- of C[0,1]. Banach & Mazur, Studia Math 4 (1933) 100--112.
- --
- Gerald A. Edgar Internet: edgar@mps.ohio-state.edu
- Department of Mathematics Bitnet: EDGAR@OHSTPY
- The Ohio State University telephone: 614-292-0395 (Office)
- Columbus, OH 43210 -292-4975 (Math. Dept.) -292-1479 (Dept. Fax)
-