home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!darwin.sura.net!jvnc.net!netnews.upenn.edu!sagi.wistar.upenn.edu
- From: weemba@sagi.wistar.upenn.edu (Matthew P Wiener)
- Newsgroups: sci.math
- Subject: Re: more math puzzles
- Message-ID: <103098@netnews.upenn.edu>
- Date: 23 Dec 92 20:39:44 GMT
- References: <24341@galaxy.ucr.edu> <1992Dec18.101409.4666@black.ox.ac.uk> <ARA.92Dec23115312@camelot.ai.mit.edu>
- Sender: news@netnews.upenn.edu
- Reply-To: weemba@sagi.wistar.upenn.edu (Matthew P Wiener)
- Organization: The Wistar Institute of Anatomy and Biology
- Lines: 14
- Nntp-Posting-Host: sagi.wistar.upenn.edu
- In-reply-to: ara@zurich.ai.mit.edu (Allan Adler)
-
- In article <ARA.92Dec23115312@camelot.ai.mit.edu>, ara@zurich (Allan Adler) writes:
- >More generally, any map from L to a metric space is eventually
- >constant. To prove this, note that L is sequentially compact [...]
-
- L is of course not sequentially compact. Since any metric space embeds
- into a product of R's, the result follows from R's.
-
- >it is proved in Singer and Thorpe, e.g. that the product of continuum
- >many unit intervals is not metrizable. But using the long line, you can
- >prove that the product of aleph-1 unit intervals is not metrizable: [...]
-
- The product is separable yet not second countable, so not metrizable.
- --
- -Matthew P Wiener (weemba@sagi.wistar.upenn.edu)
-