home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.crypt:6210 alt.security.pgp:435
- Path: sparky!uunet!olivea!spool.mu.edu!yale.edu!ira.uka.de!Sirius.dfn.de!solaris.rz.tu-clausthal.de!sun.rz.tu-clausthal.de!injc
- From: injc@sun.rz.tu-clausthal.de (Joerg Czeranski)
- Newsgroups: sci.crypt,alt.security.pgp
- Subject: Re: RSA Question (was Re: PKP/RSA comments on PGP legality)
- Message-ID: <1992Dec27.171211.19260@solaris.rz.tu-clausthal.de>
- Date: 27 Dec 92 17:12:11 GMT
- References: <CkCNrAILBh107h@nadir.uucp>
- Sender: root@solaris.rz.tu-clausthal.de (Operator)
- Organization: Techn. Univ. Clausthal
- Lines: 25
- X-Newsreader: Tin 1.1 PL5
-
- Rudy Crespin (crespin@nadir.uucp) wrote:
- : Yes! I still don't get how you figure out 133^235 without blowing up your PC.
-
- You needn't calculate 133^235, only 133^235 mod 391.
- First you can use square-and-multiply (see Knuth, Vol 2):
- 133^235 = 133^234*133 = (133^117)^2*133=(133^176*133)^2*133 = ...
- Then there is (a*b) mod m = (a mod m)*(b mod m), so instead of using
- huge numbers, you can reduce modulo 391 every time, you have done a
- square- or a multiply-step.
- For discussion of fast multiply-, square- and modulo-reduction-algorithms
- again read D.E.Knuth, The art of computer programming, Vol 2. There are
- even faster algorithms for exponentiation than square-and-multiply, some of
- which are also discussed in Knuth, Vol 2.
-
- Joerg
-
- --
- Joerg Czeranski
- Osteroeder Strasse 55 EMail injc@sun.rz.tu-clausthal.de
- W-3392 Clausthal-Zellerfeld SMTP injc@[139.174.1.3]
- Germany
-
- PGP Public Key will soon be available upon request.
-
- (.sig under construction, sorry for the inconvenience)
-