home *** CD-ROM | disk | FTP | other *** search
/ NetNews Usenet Archive 1992 #31 / NN_1992_31.iso / spool / rec / puzzles / 8128 < prev    next >
Encoding:
Text File  |  1992-12-24  |  2.3 KB  |  71 lines

  1. Newsgroups: rec.puzzles
  2. Path: sparky!uunet!spool.mu.edu!agate!linus!linus.mitre.org!cosadpm12.mitre.org!user
  3. From: rbarnick@mitre.org (Barnie Barnick)
  4. Subject: Re: Lost Solution
  5. Message-ID: <rbarnick-241292125421@cosadpm12.mitre.org>
  6. Followup-To: rec.puzzles
  7. Sender: news@linus.mitre.org (News Service)
  8. Nntp-Posting-Host: cosadpm12.mitre.org
  9. Organization: MITRE
  10. References: <38v2sf_@rpi.edu>
  11. Date: Thu, 24 Dec 1992 20:08:40 GMT
  12. Lines: 57
  13.  
  14. Bhima,
  15. Let me at least get you started.  It has its basis in prime numbers. 
  16. First, Mr. P. knew he didn't know the two numbers because his product was
  17. factorable in more than one way.  That is, had it been factorable by only
  18. two prime numbers he would have had the two numbers.  For example, had Mr.
  19. P's number been 21, he would have known the two numbers were 3 and 7.  Now
  20. in the second statement, Mr. S. responds by saying he knew that Mr. P
  21. didn't know the two numbers because Mr. S's number could be obtained in
  22. many ways and in each there was a number that was not prime.  When Mr. S
  23. goes on to say that he too did not know the two numbers, that told Mr. P of
  24. Mr. S's problem which meant that his number had to contain both a prime and
  25. non-prime number.  In such a scenario and given the rules of the game, 4
  26. and 19 are the only two that work.  Hopefully this makes enought sense to
  27. give you a way to work through it and see for yourself.  I do not take
  28. credit for this solution.      
  29.  
  30. In article <38v2sf_@rpi.edu>, nittab@aix02.ecs.rpi.edu (Bhima Nitta) wrote:
  31. > Newsgroups: rec.puzzles
  32. > Subject: Re: Lost solution
  33. > Summary: 
  34. > Expires: 
  35. > References: <1992Dec22.193053.24084@bernina.ethz.ch> <rbarnick-241292103910@cosadpm12.mitre.org>
  36. > Sender: 
  37. > Followup-To: 
  38. > Distribution: 
  39. > Organization: Rensselaer Polytechnic Institute, Troy, NY
  40. > Keywords: 
  41. > In article <rbarnick-241292103910@cosadpm12.mitre.org> rbarnick@mitre.org (Barnie Barnick) writes:
  42. > >*****
  43. > >Tim,
  44. > >The answer is 4 and 19.  
  45. > >*****
  46. > Now my interest is piqued. Why is this the solution ?
  47. > Yours ignorantly,
  48. > Bhima
  49. > >
  50. > >In article <1992Dec22.193053.24084@bernina.ethz.ch>, timh@igc.ethz.ch (Tim
  51. > >Harvey) wrote:
  52. > >> 
  53. > >> Dear Netters,
  54. > >>     A log while ago I collected the following brainteaser;
  55. > >> 
  56. > >> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  57. > >> 
  58. > >> 
  59. > >> Mr. S. and Mr. P. are both perfect logicians, being able to correctly deduce
  60.