home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: comp.parallel
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!magnus.acs.ohio-state.edu!usenet.ins.cwru.edu!gatech!hubcap!fpst
- From: jwang@sys.toronto.edu (Jingwen Wang)
- Subject: Re: Torus vs. Hypercube
- Message-ID: <1992Dec30.212755.24182@hubcap.clemson.edu>
- Sender: fpst@hubcap.clemson.edu (Steve Stevenson)
- Organization: Clemson University
- References: <1992Dec27.201910.28352@ee.eng.ohio-state.edu> <1992Dec29.210648.18508@hubcap.clemson.edu> <1992Dec30.124438.28257@hubcap.clemson.edu>
- Date: Wed, 30 Dec 1992 11:46:56 -0500
- Approved: parallel@hubcap.clemson.edu
- Lines: 25
-
- maniattb@cs.rpi.edu (Bill Maniatty) writes:
-
- >|> Is the 4^k torus isomorphic to the binary 2k-cube?
- >|>
- >|> The answer and the proof (which I found quite fun) is left as an excercise
- >|> to the reader.
- >|>
- >|> -steve
-
- >Is this a closely guarded corporate secret :-) ?
-
- The thoery is: when the dimension size (num of nodes along each dimension)
- is fixed at 4, a k-d torus is exactly a 2k-d binary hypercube.
-
- J. Wang at el., "On the communication structures of hyper-ring and hypercube
- multi-computers", J. of Computer Sci. and Technology, vol. 4, No. 1,
- Jan. 1989.
-
- jwang
- --
- {}
- {}(){} -----> Jingwen Wang, Univ. of Toronto (416)-978-1675 (office)
- {} jwang@sys.toronto.edu 1-800-ASK-wang (home)
-
-
-