home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!sol.ctr.columbia.edu!destroyer!wsu-cs!trace.eng.wayne.edu!uds
- From: uds@trace.eng.wayne.edu (Seetamraju Udaybhaskar)
- Subject: Re: 1+1/2+1/3+1/4+...+1/n
- Message-ID: <1992Nov22.201409.23876@cs.wayne.edu>
- Sender: usenet@cs.wayne.edu (Usenet News)
- Reply-To: uds@trace.eng.wayne.edu (Seetamraju Udaybhaskar)
- Organization: Wayne State University, Detroit
- References: <92324.132329K3032E2@ALIJKU11.BITNET>
- Date: Sun, 22 Nov 1992 20:14:09 GMT
- Lines: 19
-
- In article <92324.132329K3032E2@ALIJKU11.BITNET> Mutter Christoph Johannes <K3032E2@ALIJKU11.BITNET> writes:
- >I've a problem. I have to calculate the sum 1+1/2+1/3+1/4+...+1/n.
- >The result should be 100. But my computer is far too slow, to solve this
- >problem. I need the index n when the sum > 100.0
- >And that exactly.
-
-
- we know the series can be obtained from substituting x -> 1-, in the integral of the
- binomial expansion of 1/(1-x). Try computing the definite integral of 1/(1-x)
- at some value very close to 1. That should give U a good starting point...
- Then its brute force search technique...
-
- BTW, I very much doubt 32 bit precision would help... Use double precision (64 bit)
- to be able to accurately sum the series...
-
-
- Seetamraju Udaya Bhaskar Sarma
- (email : seetam @ ece7 . eng . wayne . edu)
-
-