home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!wupost!waikato.ac.nz!canterbury.ac.nz!math!jsv
- Newsgroups: sci.math
- Subject: Re: 1+1/2+1/3+1/4+...+1/n
- Message-ID: <BxzMuB.6Gr@cantua.canterbury.ac.nz>
- From: jsv@math.canterbury.ac.nz (Julian Visch)
- Date: Fri, 20 Nov 1992 00:03:46 GMT
- References: <92324.132329K3032E2@ALIJKU11.BITNET> <HANCHE.92Nov19123151@ptolemy.ams.sunysb.edu>
- Organization: Department of Mathematics, University of Canterbury
- Nntp-Posting-Host: sss330.canterbury.ac.nz
- Lines: 61
-
- In article <HANCHE.92Nov19123151@ptolemy.ams.sunysb.edu>, hanche@ams.sunysb.edu (Harald Hanche-Olsen) writes:
- |> >>>>> On Thursday, 19 Nov 1992 13:23:29 CET, Mutter Christoph Johannes
- |> >>>>> <K3032E2@ALIJKU11.BITNET> said:
- |>
- |> Chris> Hallo.
- |> Chris> I've a problem. I have to calculate the sum 1+1/2+1/3+1/4+...+1/n.
- |> Chris> The result should be 100. But my computer is far too slow, to solve this
- |> Chris> problem. I need the index n when the sum > 100.0
- |> Chris> And that exactly.
- |> Chris> Has anyone calculated this? (Perhaps on a CRAY|) ?
- |>
- |> You won't find your answer by brute force on any present-day computer.
- |> Consider the fact that this sum is fairly close to log(n)+gamma for
- |> large n, where gamma is Euler's constant; it follows that the desired
- |> n is rather close to exp(100-gamma), which has the approximate value
- |> 15092688622113788323693563264538101449859497.364099... (according to
- |> Maple). Some finesse (asymptotic analysis) is clearly called for to
- |> get the exact answer. Hint: Estimate the area between the step
- |> function 1/[t] (where [t] is the largest integer <= t) and 1/t for t
- |> between n and infinity.
- |>
- |> - Harald
-
- Using Maple with 1000 decimal places I found that for
- n = 15092688622113788323693563264538101449859496 the sum was just below 100
-
- i.e
- > evalf(sum(1./n,n=1..15092688622113788323693563264538101449859496));
- 99.999999999999999999999999999999999999999999942747074071711130782941148738689\
- 110197701561042496005255810450666769067029302578130750912902932624408446045107\
- 869792495620899224319418245033025025182041993034298490182584171857999337302532\
- 300688073637257930075532467393740472811084063270156466843499470742536200190655\
- 917162237352085261170317735188104551661757782435748221008019753912713374271191\
- 245994582381205887879299026740996025832728915343973670530181721654188180444513\
- 866671269077935205401265297418980406002802771943272916252123760413277867268520\
- 425498261036541860051418778270807265148213766262785646305055826160117200136416\
- 808713860003120853843066723275631027241605891026022366052237104221394063066151\
- 733625632162542850742304726146277045601427472123573240266841661206726172029358\
- 724453487706763774112615731347877669277984229681395187863668103744366396464141\
- 100727348414962089305298508586435048307651285171855167950037159251939422672229\
- 76667807374084860658417534406817092726803488494861982494218688745
-
- while for n = 15092688622113788323693563264538101449859497 the sum was just above
-
- i.e
-
- > evalf(sum(1./n,n=1..15092688622113788323693563264538101449859497));
- 100.00000000000000000000000000000000000000000000900432120889789165585816073577\
- 751939961860129721706615382739050887641575408610184470055411778370615584870751\
- 680997954613077090825707297214593275638141168220303234871249026721287533644787\
- 097357219223720460156707881723358750375106238732796886967352576151981740578473\
- 154443538850098393109855711492559264156512012581065894522985030576856661670380\
- 492197666026527806563072034551189051406419969136807866826955384937185305480516\
- 267185059582831185433249645216295298417893230548338419330257569719612514260620\
- 553579091533904193838602944051540368095054244965838316856354047269852341672224\
- 205459789283269124232309456277027340683218367802976813905201876499321839890129\
- 646653916571531782513179351436863392002769576844850881159970997259946269145700\
- 283456130069508391884565985862432025625268231022831416269193315035632732401558\
- 707000407239207005124432307481794262410739446246664908789671874005330617916534\
- 62604840757764909792941256264546443643288565468699021237948437324
-
-