home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!sun-barr!cs.utexas.edu!zaphod.mps.ohio-state.edu!malgudi.oar.net!caen!spool.mu.edu!darwin.sura.net!haven.umd.edu!news.umbc.edu!venus.cs.umbc.edu!piatko
- From: piatko@venus.cs.umbc.edu (Christine Piatko)
- Subject: Re: Minimum number of lines that cover a set of points
- Message-ID: <1992Nov18.162310.18795@umbc3.umbc.edu>
- Summary: NP-complete
- Sender: newspost@umbc3.umbc.edu (News posting account)
- Organization: University of Maryland Baltimore Campus, Computer Science Department
- References: <1992Nov17.163800.21271@news.lrz-muenchen.de>
- Date: Wed, 18 Nov 1992 16:23:10 GMT
- Lines: 19
-
- > I am looking for an algorithm for the following problem:
- >
- > Given a set P of points in the plane find a minimal
- > number of straight lines such that every p in P is
- > on at least one of these lines.
- >
- > sauer@nws.e-technik.tu-muenchen.de
-
- Finding the *minimum* number of lines to cover points was shown to
- be NP-hard (NP-complete if you ask "Is there a way to cover the
- points with k lines?") in the following paper:
-
- \bibitem[MT82]{MT}
- N.~Megiddo and A.~Tamir.
- \newblock On the complexity of locating linear facilities in the plane.
- \newblock {\em Operations Research Letters}, 1(5):194--197, November 1982.
-
- Christine Piatko
- piatko@cs.umbc.edu
-