home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!sdd.hp.com!spool.mu.edu!olivea!charnel!sifon!thunder.mcrcim.mcgill.edu!mouse
- From: mouse@thunder.mcrcim.mcgill.edu (der Mouse)
- Newsgroups: rec.puzzles
- Subject: Re: impossible tiling of the triangle
- Keywords: tiling
- Message-ID: <1992Nov17.120653.4778@thunder.mcrcim.mcgill.edu>
- Date: 17 Nov 92 12:06:53 GMT
- References: <BxpEHM.3F0@hermes.hrz.uni-bielefeld.de> <1992Nov15.030950.17390@eng.umd.edu>
- Organization: McGill Research Centre for Intelligent Machines
- Lines: 33
-
- In article <1992Nov15.030950.17390@eng.umd.edu>, russotto@eng.umd.edu (Matthew T. Russotto) writes:
- > In article <BxpF19.3Ko@hermes.hrz.uni-bielefeld.de> sillke@math25.mathematik.uni-bielefeld.de (Torsten Sillke) writes:
-
- >> o
- >> Show that o o o o only tiles the triangle:
-
- >> 0
- >> 0 1
- >> 0 0 1
- >> 0 2 1 1
- >> 2 2 2 2 1
-
- > If it tiles an equilateral triangle with sides of length 5, why can't
- > it tile the equilateral triangle (length 10) made up of 4 of those?
-
- Because these are discrete triangles, not continuous ones. The
- triangle of side 10 is made up of three of side 5 and one of side 4:
-
- d
- d d
- d d d
- d d d d
- d d d d d
- a c c c c b
- a a c c c b b
- a a a c c b b b
- a a a a c b b b b
- a a a a a b b b b b
-
- der Mouse
-
- mouse@larry.mcrcim.mcgill.edu
-