home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!ogicse!news.u.washington.edu!ns1.nodak.edu!plains.NoDak.edu!compton
- From: compton@plains.NoDak.edu (Curtis M. Compton)
- Newsgroups: comp.compression
- Subject: Re: Math question
- Message-ID: <BxtHEp.F36@ns1.nodak.edu>
- Date: 16 Nov 92 16:20:49 GMT
- Article-I.D.: ns1.BxtHEp.F36
- Sender: usenet@ns1.nodak.edu (News login)
- Organization: University of North Dakota, Grand Forks
- Lines: 88
- Nntp-Posting-Host: plains.nodak.edu
-
- In article <24005@hacgate.SCG.HAC.COM>
- abirenbo@rigel.cel.scg.hac.com (Aaron Birenboim) writes:
-
- >While working on an optimization problem related to compression
- >I bumped into the following nasty little problem :
-
- > evaluate:
- >
- > { [(i+1)q }
- > d { [ }
- > --- { Integral [ (x - (i + 0.5) q)^2 * exp(-c * x) dx }
- > dq { [ }
- > { [i*q }
-
- > I have evaluated the integral..... and it is terribly nasty. Even if I
- >didn't goof on the evaluation, i would surely goof on the differentiation.
-
- > c and i are constants. I'm trying to minimize error for q.
-
- > I seem to remember some terribly nasty formulas for handling the
- >differentiation before evaluating any integral.
-
- > I think it involved the bounds, derivitives of the bounds, the integrand
- >and the derivitave of the integrand.
-
- Well, I ran your problem through Macsyma and here goes...
-
- [Macsyma header deleted]
-
- (C1) (x - (i + 0.5) * q)^2 * exp(-c * x);
-
- 2 - C X
- (D1) (X - (I + 0.5) Q) %E
- (C2) integrate (%,x,i*q,(i+1)*q);
-
- Is Q zero or nonzero?
- nonzero;
-
- /* Just a guess on my part. */
-
- [Macsyma garbage deleted]
-
- Is Q positive or negative?
- positive;
-
- /* Just another guess. */
-
- [stuff deleted]
-
- 2 2 - C I Q 2 2 - C I Q - C Q
- (C Q - 4 C Q + 8) %E (C Q + 4 C Q + 8) %E
- (D2) ----------------------------- - -----------------------------------
- 3 3
- 4 C 4 C
- (C3) diff (%,q);
-
- 2 2 - C I Q - C Q
- (- C I - C) (C Q + 4 C Q + 8) %E
- (D3) - -----------------------------------------------
- 3
- 4 C
-
- 2 - C I Q - C Q 2 2 - C I Q
- (2 C Q + 4 C) %E I (C Q - 4 C Q + 8) %E
- - ------------------------------ - -------------------------------
- 3 2
- 4 C 4 C
-
- 2 - C I Q
- (2 C Q - 4 C) %E
- + ------------------------
- 3
- 4 C
- (C4) fullratsimp (%);
-
- 2 2 C Q 2 2 2
- (D4) - ((C I Q + (- 4 C I - 2 C) Q + 8 I + 4) %E + (- C I - C ) Q
-
- - C I Q - C Q 2
- + (- 4 C I - 2 C) Q - 8 I - 4) %E /(4 C )
-
- There's your answer! I hope it helps.
- --
- Curtis M. Compton | Future home of Rookerie Software |
- compton@plains.NoDak.edu +----------------------------------+
- 560 Carleton Court, Apt #11 | "I am the Walrus" - John Lennon
- Grand Forks, ND 58203 | "I am the Keeper of the Cheese" - Ren Hoek
- (701) 795-5099 | "I am the Master of Penguins" - Curt Compton
-