home *** CD-ROM | disk | FTP | other *** search
-
- /**************************************************************************
- **
- ** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
- **
- ** Meschach Library
- **
- ** This Meschach Library is provided "as is" without any express
- ** or implied warranty of any kind with respect to this software.
- ** In particular the authors shall not be liable for any direct,
- ** indirect, special, incidental or consequential damages arising
- ** in any way from use of the software.
- **
- ** Everyone is granted permission to copy, modify and redistribute this
- ** Meschach Library, provided:
- ** 1. All copies contain this copyright notice.
- ** 2. All modified copies shall carry a notice stating who
- ** made the last modification and the date of such modification.
- ** 3. No charge is made for this software or works derived from it.
- ** This clause shall not be construed as constraining other software
- ** distributed on the same medium as this software, nor is a
- ** distribution fee considered a charge.
- **
- ***************************************************************************/
-
- /*
- This file contains the routines needed to perform QR factorisation
- of matrices, as well as Householder transformations.
- The internal "factored form" of a matrix A is not quite standard.
- The diagonal of A is replaced by the diagonal of R -- not by the 1st non-zero
- entries of the Householder vectors. The 1st non-zero entries are held in
- the diag parameter of QRfactor(). The reason for this non-standard
- representation is that it enables direct use of the Usolve() function
- rather than requiring that a seperate function be written just for this case.
- See, e.g., QRsolve() below for more details.
-
- Complex version
-
- */
-
- static char rcsid[] = "$Id: zqrfctr.c,v 1.1 1994/01/13 04:21:22 des Exp $";
-
- #include <stdio.h>
- #include <math.h>
- #include "zmatrix.h"
- #include "zmatrix2.h"
-
-
- #define is_zero(z) ((z).re == 0.0 && (z).im == 0.0)
-
-
- #define sign(x) ((x) > 0.0 ? 1 : ((x) < 0.0 ? -1 : 0 ))
-
- /* Note: The usual representation of a Householder transformation is taken
- to be:
- P = I - beta.u.u*
- where beta = 2/(u*.u) and u is called the Householder vector
- (u* is the conjugate transposed vector of u
- */
-
- /* zQRfactor -- forms the QR factorisation of A
- -- factorisation stored in compact form as described above
- (not quite standard format) */
- ZMAT *zQRfactor(A,diag)
- ZMAT *A;
- ZVEC *diag;
- {
- u_int k,limit;
- Real beta;
- static ZVEC *tmp1=ZVNULL;
-
- if ( ! A || ! diag )
- error(E_NULL,"zQRfactor");
- limit = min(A->m,A->n);
- if ( diag->dim < limit )
- error(E_SIZES,"zQRfactor");
-
- tmp1 = zv_resize(tmp1,A->m);
- MEM_STAT_REG(tmp1,TYPE_ZVEC);
-
- for ( k=0; k<limit; k++ )
- {
- /* get H/holder vector for the k-th column */
- zget_col(A,k,tmp1);
- /* hhvec(tmp1,k,&beta->ve[k],tmp1,&A->me[k][k]); */
- zhhvec(tmp1,k,&beta,tmp1,&A->me[k][k]);
- diag->ve[k] = tmp1->ve[k];
-
- /* apply H/holder vector to remaining columns */
- /* hhtrcols(A,k,k+1,tmp1,beta->ve[k]); */
- tracecatch(zhhtrcols(A,k,k+1,tmp1,beta),"zQRfactor");
- }
-
- return (A);
- }
-
- /* zQRCPfactor -- forms the QR factorisation of A with column pivoting
- -- factorisation stored in compact form as described above
- ( not quite standard format ) */
- ZMAT *zQRCPfactor(A,diag,px)
- ZMAT *A;
- ZVEC *diag;
- PERM *px;
- {
- u_int i, i_max, j, k, limit;
- static ZVEC *tmp1=ZVNULL, *tmp2=ZVNULL;
- static VEC *gamma=VNULL;
- Real beta;
- Real maxgamma, sum, tmp;
- complex ztmp;
-
- if ( ! A || ! diag || ! px )
- error(E_NULL,"QRCPfactor");
- limit = min(A->m,A->n);
- if ( diag->dim < limit || px->size != A->n )
- error(E_SIZES,"QRCPfactor");
-
- tmp1 = zv_resize(tmp1,A->m);
- tmp2 = zv_resize(tmp2,A->m);
- gamma = v_resize(gamma,A->n);
- MEM_STAT_REG(tmp1,TYPE_ZVEC);
- MEM_STAT_REG(tmp2,TYPE_ZVEC);
- MEM_STAT_REG(gamma,TYPE_VEC);
-
- /* initialise gamma and px */
- for ( j=0; j<A->n; j++ )
- {
- px->pe[j] = j;
- sum = 0.0;
- for ( i=0; i<A->m; i++ )
- sum += square(A->me[i][j].re) + square(A->me[i][j].im);
- gamma->ve[j] = sum;
- }
-
- for ( k=0; k<limit; k++ )
- {
- /* find "best" column to use */
- i_max = k; maxgamma = gamma->ve[k];
- for ( i=k+1; i<A->n; i++ )
- /* Loop invariant:maxgamma=gamma[i_max]
- >=gamma[l];l=k,...,i-1 */
- if ( gamma->ve[i] > maxgamma )
- { maxgamma = gamma->ve[i]; i_max = i; }
-
- /* swap columns if necessary */
- if ( i_max != k )
- {
- /* swap gamma values */
- tmp = gamma->ve[k];
- gamma->ve[k] = gamma->ve[i_max];
- gamma->ve[i_max] = tmp;
-
- /* update column permutation */
- px_transp(px,k,i_max);
-
- /* swap columns of A */
- for ( i=0; i<A->m; i++ )
- {
- ztmp = A->me[i][k];
- A->me[i][k] = A->me[i][i_max];
- A->me[i][i_max] = ztmp;
- }
- }
-
- /* get H/holder vector for the k-th column */
- zget_col(A,k,tmp1);
- /* hhvec(tmp1,k,&beta->ve[k],tmp1,&A->me[k][k]); */
- zhhvec(tmp1,k,&beta,tmp1,&A->me[k][k]);
- diag->ve[k] = tmp1->ve[k];
-
- /* apply H/holder vector to remaining columns */
- /* hhtrcols(A,k,k+1,tmp1,beta->ve[k]); */
- zhhtrcols(A,k,k+1,tmp1,beta);
-
- /* update gamma values */
- for ( j=k+1; j<A->n; j++ )
- gamma->ve[j] -= square(A->me[k][j].re)+square(A->me[k][j].im);
- }
-
- return (A);
- }
-
- /* zQsolve -- solves Qx = b, Q is an orthogonal matrix stored in compact
- form a la QRfactor()
- -- may be in-situ */
- ZVEC *_zQsolve(QR,diag,b,x,tmp)
- ZMAT *QR;
- ZVEC *diag, *b, *x, *tmp;
- {
- u_int dynamic;
- int k, limit;
- Real beta, r_ii, tmp_val;
-
- limit = min(QR->m,QR->n);
- dynamic = FALSE;
- if ( ! QR || ! diag || ! b )
- error(E_NULL,"_zQsolve");
- if ( diag->dim < limit || b->dim != QR->m )
- error(E_SIZES,"_zQsolve");
- x = zv_resize(x,QR->m);
- if ( tmp == ZVNULL )
- dynamic = TRUE;
- tmp = zv_resize(tmp,QR->m);
-
- /* apply H/holder transforms in normal order */
- x = zv_copy(b,x);
- for ( k = 0 ; k < limit ; k++ )
- {
- zget_col(QR,k,tmp);
- r_ii = zabs(tmp->ve[k]);
- tmp->ve[k] = diag->ve[k];
- tmp_val = (r_ii*zabs(diag->ve[k]));
- beta = ( tmp_val == 0.0 ) ? 0.0 : 1.0/tmp_val;
- /* hhtrvec(tmp,beta->ve[k],k,x,x); */
- zhhtrvec(tmp,beta,k,x,x);
- }
-
- if ( dynamic )
- ZV_FREE(tmp);
-
- return (x);
- }
-
- /* zmakeQ -- constructs orthogonal matrix from Householder vectors stored in
- compact QR form */
- ZMAT *zmakeQ(QR,diag,Qout)
- ZMAT *QR,*Qout;
- ZVEC *diag;
- {
- static ZVEC *tmp1=ZVNULL,*tmp2=ZVNULL;
- u_int i, limit;
- Real beta, r_ii, tmp_val;
- int j;
-
- limit = min(QR->m,QR->n);
- if ( ! QR || ! diag )
- error(E_NULL,"zmakeQ");
- if ( diag->dim < limit )
- error(E_SIZES,"zmakeQ");
- Qout = zm_resize(Qout,QR->m,QR->m);
-
- tmp1 = zv_resize(tmp1,QR->m); /* contains basis vec & columns of Q */
- tmp2 = zv_resize(tmp2,QR->m); /* contains H/holder vectors */
- MEM_STAT_REG(tmp1,TYPE_ZVEC);
- MEM_STAT_REG(tmp2,TYPE_ZVEC);
-
- for ( i=0; i<QR->m ; i++ )
- { /* get i-th column of Q */
- /* set up tmp1 as i-th basis vector */
- for ( j=0; j<QR->m ; j++ )
- tmp1->ve[j].re = tmp1->ve[j].im = 0.0;
- tmp1->ve[i].re = 1.0;
-
- /* apply H/h transforms in reverse order */
- for ( j=limit-1; j>=0; j-- )
- {
- zget_col(QR,j,tmp2);
- r_ii = zabs(tmp2->ve[j]);
- tmp2->ve[j] = diag->ve[j];
- tmp_val = (r_ii*zabs(diag->ve[j]));
- beta = ( tmp_val == 0.0 ) ? 0.0 : 1.0/tmp_val;
- /* hhtrvec(tmp2,beta->ve[j],j,tmp1,tmp1); */
- zhhtrvec(tmp2,beta,j,tmp1,tmp1);
- }
-
- /* insert into Q */
- zset_col(Qout,i,tmp1);
- }
-
- return (Qout);
- }
-
- /* zmakeR -- constructs upper triangular matrix from QR (compact form)
- -- may be in-situ (all it does is zero the lower 1/2) */
- ZMAT *zmakeR(QR,Rout)
- ZMAT *QR,*Rout;
- {
- u_int i,j;
-
- if ( QR==ZMNULL )
- error(E_NULL,"zmakeR");
- Rout = zm_copy(QR,Rout);
-
- for ( i=1; i<QR->m; i++ )
- for ( j=0; j<QR->n && j<i; j++ )
- Rout->me[i][j].re = Rout->me[i][j].im = 0.0;
-
- return (Rout);
- }
-
- /* zQRsolve -- solves the system Q.R.x=b where Q & R are stored in compact form
- -- returns x, which is created if necessary */
- ZVEC *zQRsolve(QR,diag,b,x)
- ZMAT *QR;
- ZVEC *diag, *b, *x;
- {
- int limit;
- static ZVEC *tmp = ZVNULL;
-
- if ( ! QR || ! diag || ! b )
- error(E_NULL,"zQRsolve");
- limit = min(QR->m,QR->n);
- if ( diag->dim < limit || b->dim != QR->m )
- error(E_SIZES,"zQRsolve");
- tmp = zv_resize(tmp,limit);
- MEM_STAT_REG(tmp,TYPE_ZVEC);
-
- x = zv_resize(x,QR->n);
- _zQsolve(QR,diag,b,x,tmp);
- x = zUsolve(QR,x,x,0.0);
- x = zv_resize(x,QR->n);
-
- return x;
- }
-
- /* zQRAsolve -- solves the system (Q.R)*.x = b
- -- Q & R are stored in compact form
- -- returns x, which is created if necessary */
- ZVEC *zQRAsolve(QR,diag,b,x)
- ZMAT *QR;
- ZVEC *diag, *b, *x;
- {
- int j, limit;
- Real beta, r_ii, tmp_val;
- static ZVEC *tmp = ZVNULL;
-
- if ( ! QR || ! diag || ! b )
- error(E_NULL,"zQRAsolve");
- limit = min(QR->m,QR->n);
- if ( diag->dim < limit || b->dim != QR->n )
- error(E_SIZES,"zQRAsolve");
-
- x = zv_resize(x,QR->m);
- x = zUAsolve(QR,b,x,0.0);
- x = zv_resize(x,QR->m);
-
- tmp = zv_resize(tmp,x->dim);
- MEM_STAT_REG(tmp,TYPE_ZVEC);
- printf("zQRAsolve: tmp->dim = %d, x->dim = %d\n", tmp->dim, x->dim);
-
- /* apply H/h transforms in reverse order */
- for ( j=limit-1; j>=0; j-- )
- {
- zget_col(QR,j,tmp);
- tmp = zv_resize(tmp,QR->m);
- r_ii = zabs(tmp->ve[j]);
- tmp->ve[j] = diag->ve[j];
- tmp_val = (r_ii*zabs(diag->ve[j]));
- beta = ( tmp_val == 0.0 ) ? 0.0 : 1.0/tmp_val;
- zhhtrvec(tmp,beta,j,x,x);
- }
-
-
- return x;
- }
-
- /* zQRCPsolve -- solves A.x = b where A is factored by QRCPfactor()
- -- assumes that A is in the compact factored form */
- ZVEC *zQRCPsolve(QR,diag,pivot,b,x)
- ZMAT *QR;
- ZVEC *diag;
- PERM *pivot;
- ZVEC *b, *x;
- {
- if ( ! QR || ! diag || ! pivot || ! b )
- error(E_NULL,"zQRCPsolve");
- if ( (QR->m > diag->dim && QR->n > diag->dim) || QR->n != pivot->size )
- error(E_SIZES,"zQRCPsolve");
-
- x = zQRsolve(QR,diag,b,x);
- x = pxinv_zvec(pivot,x,x);
-
- return x;
- }
-
- /* zUmlt -- compute out = upper_triang(U).x
- -- may be in situ */
- ZVEC *zUmlt(U,x,out)
- ZMAT *U;
- ZVEC *x, *out;
- {
- int i, limit;
-
- if ( U == ZMNULL || x == ZVNULL )
- error(E_NULL,"zUmlt");
- limit = min(U->m,U->n);
- if ( limit != x->dim )
- error(E_SIZES,"zUmlt");
- if ( out == ZVNULL || out->dim < limit )
- out = zv_resize(out,limit);
-
- for ( i = 0; i < limit; i++ )
- out->ve[i] = __zip__(&(x->ve[i]),&(U->me[i][i]),limit - i,Z_NOCONJ);
- return out;
- }
-
- /* zUAmlt -- returns out = upper_triang(U)^T.x */
- ZVEC *zUAmlt(U,x,out)
- ZMAT *U;
- ZVEC *x, *out;
- {
- /* complex sum; */
- complex tmp;
- int i, limit;
-
- if ( U == ZMNULL || x == ZVNULL )
- error(E_NULL,"zUAmlt");
- limit = min(U->m,U->n);
- if ( out == ZVNULL || out->dim < limit )
- out = zv_resize(out,limit);
-
- for ( i = limit-1; i >= 0; i-- )
- {
- tmp = x->ve[i];
- out->ve[i].re = out->ve[i].im = 0.0;
- __zmltadd__(&(out->ve[i]),&(U->me[i][i]),tmp,limit-i-1,Z_CONJ);
- }
-
- return out;
- }
-
-
- /* zQRcondest -- returns an estimate of the 2-norm condition number of the
- matrix factorised by QRfactor() or QRCPfactor()
- -- note that as Q does not affect the 2-norm condition number,
- it is not necessary to pass the diag, beta (or pivot) vectors
- -- generates a lower bound on the true condition number
- -- if the matrix is exactly singular, HUGE is returned
- -- note that QRcondest() is likely to be more reliable for
- matrices factored using QRCPfactor() */
- double zQRcondest(QR)
- ZMAT *QR;
- {
- static ZVEC *y=ZVNULL;
- Real norm, norm1, norm2, tmp1, tmp2;
- complex sum, tmp;
- int i, j, limit;
-
- if ( QR == ZMNULL )
- error(E_NULL,"zQRcondest");
-
- limit = min(QR->m,QR->n);
- for ( i = 0; i < limit; i++ )
- /* if ( QR->me[i][i] == 0.0 ) */
- if ( is_zero(QR->me[i][i]) )
- return HUGE_VAL;
-
- y = zv_resize(y,limit);
- MEM_STAT_REG(y,TYPE_ZVEC);
- /* use the trick for getting a unit vector y with ||R.y||_inf small
- from the LU condition estimator */
- for ( i = 0; i < limit; i++ )
- {
- sum.re = sum.im = 0.0;
- for ( j = 0; j < i; j++ )
- /* sum -= QR->me[j][i]*y->ve[j]; */
- sum = zsub(sum,zmlt(QR->me[j][i],y->ve[j]));
- /* sum -= (sum < 0.0) ? 1.0 : -1.0; */
- norm1 = zabs(sum);
- if ( norm1 == 0.0 )
- sum.re = 1.0;
- else
- {
- sum.re += sum.re / norm1;
- sum.im += sum.im / norm1;
- }
- /* y->ve[i] = sum / QR->me[i][i]; */
- y->ve[i] = zdiv(sum,QR->me[i][i]);
- }
- zUAmlt(QR,y,y);
-
- /* now apply inverse power method to R*.R */
- for ( i = 0; i < 3; i++ )
- {
- tmp1 = zv_norm2(y);
- zv_mlt(zmake(1.0/tmp1,0.0),y,y);
- zUAsolve(QR,y,y,0.0);
- tmp2 = zv_norm2(y);
- zv_mlt(zmake(1.0/tmp2,0.0),y,y);
- zUsolve(QR,y,y,0.0);
- }
- /* now compute approximation for ||R^{-1}||_2 */
- norm1 = sqrt(tmp1)*sqrt(tmp2);
-
- /* now use complementary approach to compute approximation to ||R||_2 */
- for ( i = limit-1; i >= 0; i-- )
- {
- sum.re = sum.im = 0.0;
- for ( j = i+1; j < limit; j++ )
- sum = zadd(sum,zmlt(QR->me[i][j],y->ve[j]));
- if ( is_zero(QR->me[i][i]) )
- return HUGE_VAL;
- tmp = zdiv(sum,QR->me[i][i]);
- if ( is_zero(tmp) )
- {
- y->ve[i].re = 1.0;
- y->ve[i].im = 0.0;
- }
- else
- {
- norm = zabs(tmp);
- y->ve[i].re = sum.re / norm;
- y->ve[i].im = sum.im / norm;
- }
- /* y->ve[i] = (sum >= 0.0) ? 1.0 : -1.0; */
- /* y->ve[i] = (QR->me[i][i] >= 0.0) ? y->ve[i] : - y->ve[i]; */
- }
-
- /* now apply power method to R*.R */
- for ( i = 0; i < 3; i++ )
- {
- tmp1 = zv_norm2(y);
- zv_mlt(zmake(1.0/tmp1,0.0),y,y);
- zUmlt(QR,y,y);
- tmp2 = zv_norm2(y);
- zv_mlt(zmake(1.0/tmp2,0.0),y,y);
- zUAmlt(QR,y,y);
- }
- norm2 = sqrt(tmp1)*sqrt(tmp2);
-
- /* printf("QRcondest: norm1 = %g, norm2 = %g\n",norm1,norm2); */
-
- return norm1*norm2;
- }
-
-