home *** CD-ROM | disk | FTP | other *** search
-
- /**************************************************************************
- **
- ** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
- **
- ** Meschach Library
- **
- ** This Meschach Library is provided "as is" without any express
- ** or implied warranty of any kind with respect to this software.
- ** In particular the authors shall not be liable for any direct,
- ** indirect, special, incidental or consequential damages arising
- ** in any way from use of the software.
- **
- ** Everyone is granted permission to copy, modify and redistribute this
- ** Meschach Library, provided:
- ** 1. All copies contain this copyright notice.
- ** 2. All modified copies shall carry a notice stating who
- ** made the last modification and the date of such modification.
- ** 3. No charge is made for this software or works derived from it.
- ** This clause shall not be construed as constraining other software
- ** distributed on the same medium as this software, nor is a
- ** distribution fee considered a charge.
- **
- ***************************************************************************/
-
-
-
- #include <stdio.h>
- #include "zmatrix.h"
-
- static char rcsid[] = "$Id: zmatop.c,v 1.1 1994/01/13 04:24:46 des Exp $";
-
-
- #define is_zero(z) ((z).re == 0.0 && (z).im == 0.0)
-
- /* zm_add -- matrix addition -- may be in-situ */
- ZMAT *zm_add(mat1,mat2,out)
- ZMAT *mat1,*mat2,*out;
- {
- u_int m,n,i;
-
- if ( mat1==ZMNULL || mat2==ZMNULL )
- error(E_NULL,"zm_add");
- if ( mat1->m != mat2->m || mat1->n != mat2->n )
- error(E_SIZES,"zm_add");
- if ( out==ZMNULL || out->m != mat1->m || out->n != mat1->n )
- out = zm_resize(out,mat1->m,mat1->n);
- m = mat1->m; n = mat1->n;
- for ( i=0; i<m; i++ )
- {
- __zadd__(mat1->me[i],mat2->me[i],out->me[i],(int)n);
- /**************************************************
- for ( j=0; j<n; j++ )
- out->me[i][j] = mat1->me[i][j]+mat2->me[i][j];
- **************************************************/
- }
-
- return (out);
- }
-
- /* zm_sub -- matrix subtraction -- may be in-situ */
- ZMAT *zm_sub(mat1,mat2,out)
- ZMAT *mat1,*mat2,*out;
- {
- u_int m,n,i;
-
- if ( mat1==ZMNULL || mat2==ZMNULL )
- error(E_NULL,"zm_sub");
- if ( mat1->m != mat2->m || mat1->n != mat2->n )
- error(E_SIZES,"zm_sub");
- if ( out==ZMNULL || out->m != mat1->m || out->n != mat1->n )
- out = zm_resize(out,mat1->m,mat1->n);
- m = mat1->m; n = mat1->n;
- for ( i=0; i<m; i++ )
- {
- __zsub__(mat1->me[i],mat2->me[i],out->me[i],(int)n);
- /**************************************************
- for ( j=0; j<n; j++ )
- out->me[i][j] = mat1->me[i][j]-mat2->me[i][j];
- **************************************************/
- }
-
- return (out);
- }
-
- /*
- Note: In the following routines, "adjoint" means complex conjugate
- transpose:
- A* = conjugate(A^T)
- */
-
- /* zm_mlt -- matrix-matrix multiplication */
- ZMAT *zm_mlt(A,B,OUT)
- ZMAT *A,*B,*OUT;
- {
- u_int i, /* j, */ k, m, n, p;
- complex **A_v, **B_v /*, *B_row, *OUT_row, sum, tmp */;
-
- if ( A==ZMNULL || B==ZMNULL )
- error(E_NULL,"zm_mlt");
- if ( A->n != B->m )
- error(E_SIZES,"zm_mlt");
- if ( A == OUT || B == OUT )
- error(E_INSITU,"zm_mlt");
- m = A->m; n = A->n; p = B->n;
- A_v = A->me; B_v = B->me;
-
- if ( OUT==ZMNULL || OUT->m != A->m || OUT->n != B->n )
- OUT = zm_resize(OUT,A->m,B->n);
-
- /****************************************************************
- for ( i=0; i<m; i++ )
- for ( j=0; j<p; j++ )
- {
- sum = 0.0;
- for ( k=0; k<n; k++ )
- sum += A_v[i][k]*B_v[k][j];
- OUT->me[i][j] = sum;
- }
- ****************************************************************/
- zm_zero(OUT);
- for ( i=0; i<m; i++ )
- for ( k=0; k<n; k++ )
- {
- if ( ! is_zero(A_v[i][k]) )
- __zmltadd__(OUT->me[i],B_v[k],A_v[i][k],(int)p,Z_NOCONJ);
- /**************************************************
- B_row = B_v[k]; OUT_row = OUT->me[i];
- for ( j=0; j<p; j++ )
- (*OUT_row++) += tmp*(*B_row++);
- **************************************************/
- }
-
- return OUT;
- }
-
- /* zmma_mlt -- matrix-matrix adjoint multiplication
- -- A.B* is returned, and stored in OUT */
- ZMAT *zmma_mlt(A,B,OUT)
- ZMAT *A, *B, *OUT;
- {
- int i, j, limit;
- /* complex *A_row, *B_row, sum; */
-
- if ( ! A || ! B )
- error(E_NULL,"zmma_mlt");
- if ( A == OUT || B == OUT )
- error(E_INSITU,"zmma_mlt");
- if ( A->n != B->n )
- error(E_SIZES,"zmma_mlt");
- if ( ! OUT || OUT->m != A->m || OUT->n != B->m )
- OUT = zm_resize(OUT,A->m,B->m);
-
- limit = A->n;
- for ( i = 0; i < A->m; i++ )
- for ( j = 0; j < B->m; j++ )
- {
- OUT->me[i][j] = __zip__(B->me[j],A->me[i],(int)limit,Z_CONJ);
- /**************************************************
- sum = 0.0;
- A_row = A->me[i];
- B_row = B->me[j];
- for ( k = 0; k < limit; k++ )
- sum += (*A_row++)*(*B_row++);
- OUT->me[i][j] = sum;
- **************************************************/
- }
-
- return OUT;
- }
-
- /* zmam_mlt -- matrix adjoint-matrix multiplication
- -- A*.B is returned, result stored in OUT */
- ZMAT *zmam_mlt(A,B,OUT)
- ZMAT *A, *B, *OUT;
- {
- int i, k, limit;
- /* complex *B_row, *OUT_row, multiplier; */
- complex tmp;
-
- if ( ! A || ! B )
- error(E_NULL,"zmam_mlt");
- if ( A == OUT || B == OUT )
- error(E_INSITU,"zmam_mlt");
- if ( A->m != B->m )
- error(E_SIZES,"zmam_mlt");
- if ( ! OUT || OUT->m != A->n || OUT->n != B->n )
- OUT = zm_resize(OUT,A->n,B->n);
-
- limit = B->n;
- zm_zero(OUT);
- for ( k = 0; k < A->m; k++ )
- for ( i = 0; i < A->n; i++ )
- {
- tmp.re = A->me[k][i].re;
- tmp.im = - A->me[k][i].im;
- if ( ! is_zero(tmp) )
- __zmltadd__(OUT->me[i],B->me[k],tmp,(int)limit,Z_NOCONJ);
- }
-
- return OUT;
- }
-
- /* zmv_mlt -- matrix-vector multiplication
- -- Note: b is treated as a column vector */
- ZVEC *zmv_mlt(A,b,out)
- ZMAT *A;
- ZVEC *b,*out;
- {
- u_int i, m, n;
- complex **A_v, *b_v /*, *A_row */;
- /* register complex sum; */
-
- if ( A==ZMNULL || b==ZVNULL )
- error(E_NULL,"zmv_mlt");
- if ( A->n != b->dim )
- error(E_SIZES,"zmv_mlt");
- if ( b == out )
- error(E_INSITU,"zmv_mlt");
- if ( out == ZVNULL || out->dim != A->m )
- out = zv_resize(out,A->m);
-
- m = A->m; n = A->n;
- A_v = A->me; b_v = b->ve;
- for ( i=0; i<m; i++ )
- {
- /* for ( j=0; j<n; j++ )
- sum += A_v[i][j]*b_v[j]; */
- out->ve[i] = __zip__(A_v[i],b_v,(int)n,Z_NOCONJ);
- /**************************************************
- A_row = A_v[i]; b_v = b->ve;
- for ( j=0; j<n; j++ )
- sum += (*A_row++)*(*b_v++);
- out->ve[i] = sum;
- **************************************************/
- }
-
- return out;
- }
-
- /* zsm_mlt -- scalar-matrix multiply -- may be in-situ */
- ZMAT *zsm_mlt(scalar,matrix,out)
- complex scalar;
- ZMAT *matrix,*out;
- {
- u_int m,n,i;
-
- if ( matrix==ZMNULL )
- error(E_NULL,"zsm_mlt");
- if ( out==ZMNULL || out->m != matrix->m || out->n != matrix->n )
- out = zm_resize(out,matrix->m,matrix->n);
- m = matrix->m; n = matrix->n;
- for ( i=0; i<m; i++ )
- __zmlt__(matrix->me[i],scalar,out->me[i],(int)n);
- /**************************************************
- for ( j=0; j<n; j++ )
- out->me[i][j] = scalar*matrix->me[i][j];
- **************************************************/
- return (out);
- }
-
- /* zvm_mlt -- vector adjoint-matrix multiplication */
- ZVEC *zvm_mlt(A,b,out)
- ZMAT *A;
- ZVEC *b,*out;
- {
- u_int j,m,n;
- /* complex sum,**A_v,*b_v; */
-
- if ( A==ZMNULL || b==ZVNULL )
- error(E_NULL,"zvm_mlt");
- if ( A->m != b->dim )
- error(E_SIZES,"zvm_mlt");
- if ( b == out )
- error(E_INSITU,"zvm_mlt");
- if ( out == ZVNULL || out->dim != A->n )
- out = zv_resize(out,A->n);
-
- m = A->m; n = A->n;
-
- zv_zero(out);
- for ( j = 0; j < m; j++ )
- if ( b->ve[j].re != 0.0 || b->ve[j].im != 0.0 )
- __zmltadd__(out->ve,A->me[j],b->ve[j],(int)n,Z_CONJ);
- /**************************************************
- A_v = A->me; b_v = b->ve;
- for ( j=0; j<n; j++ )
- {
- sum = 0.0;
- for ( i=0; i<m; i++ )
- sum += b_v[i]*A_v[i][j];
- out->ve[j] = sum;
- }
- **************************************************/
-
- return out;
- }
-
- /* zm_adjoint -- adjoint matrix */
- ZMAT *zm_adjoint(in,out)
- ZMAT *in, *out;
- {
- int i, j;
- int in_situ;
- complex tmp;
-
- if ( in == ZMNULL )
- error(E_NULL,"zm_adjoint");
- if ( in == out && in->n != in->m )
- error(E_INSITU2,"zm_adjoint");
- in_situ = ( in == out );
- if ( out == ZMNULL || out->m != in->n || out->n != in->m )
- out = zm_resize(out,in->n,in->m);
-
- if ( ! in_situ )
- {
- for ( i = 0; i < in->m; i++ )
- for ( j = 0; j < in->n; j++ )
- {
- out->me[j][i].re = in->me[i][j].re;
- out->me[j][i].im = - in->me[i][j].im;
- }
- }
- else
- {
- for ( i = 0 ; i < in->m; i++ )
- {
- for ( j = 0; j < i; j++ )
- {
- tmp.re = in->me[i][j].re;
- tmp.im = in->me[i][j].im;
- in->me[i][j].re = in->me[j][i].re;
- in->me[i][j].im = - in->me[j][i].im;
- in->me[j][i].re = tmp.re;
- in->me[j][i].im = - tmp.im;
- }
- in->me[i][i].im = - in->me[i][i].im;
- }
- }
-
- return out;
- }
-
- /* zswap_rows -- swaps rows i and j of matrix A upto column lim */
- ZMAT *zswap_rows(A,i,j,lo,hi)
- ZMAT *A;
- int i, j, lo, hi;
- {
- int k;
- complex **A_me, tmp;
-
- if ( ! A )
- error(E_NULL,"swap_rows");
- if ( i < 0 || j < 0 || i >= A->m || j >= A->m )
- error(E_SIZES,"swap_rows");
- lo = max(0,lo);
- hi = min(hi,A->n-1);
- A_me = A->me;
-
- for ( k = lo; k <= hi; k++ )
- {
- tmp = A_me[k][i];
- A_me[k][i] = A_me[k][j];
- A_me[k][j] = tmp;
- }
- return A;
- }
-
- /* zswap_cols -- swap columns i and j of matrix A upto row lim */
- ZMAT *zswap_cols(A,i,j,lo,hi)
- ZMAT *A;
- int i, j, lo, hi;
- {
- int k;
- complex **A_me, tmp;
-
- if ( ! A )
- error(E_NULL,"swap_cols");
- if ( i < 0 || j < 0 || i >= A->n || j >= A->n )
- error(E_SIZES,"swap_cols");
- lo = max(0,lo);
- hi = min(hi,A->m-1);
- A_me = A->me;
-
- for ( k = lo; k <= hi; k++ )
- {
- tmp = A_me[i][k];
- A_me[i][k] = A_me[j][k];
- A_me[j][k] = tmp;
- }
- return A;
- }
-
- /* mz_mltadd -- matrix-scalar multiply and add
- -- may be in situ
- -- returns out == A1 + s*A2 */
- ZMAT *mz_mltadd(A1,A2,s,out)
- ZMAT *A1, *A2, *out;
- complex s;
- {
- /* register complex *A1_e, *A2_e, *out_e; */
- /* register int j; */
- int i, m, n;
-
- if ( ! A1 || ! A2 )
- error(E_NULL,"mz_mltadd");
- if ( A1->m != A2->m || A1->n != A2->n )
- error(E_SIZES,"mz_mltadd");
-
- if ( s.re == 0.0 && s.im == 0.0 )
- return zm_copy(A1,out);
- if ( s.re == 1.0 && s.im == 0.0 )
- return zm_add(A1,A2,out);
-
- tracecatch(out = zm_copy(A1,out),"mz_mltadd");
-
- m = A1->m; n = A1->n;
- for ( i = 0; i < m; i++ )
- {
- __zmltadd__(out->me[i],A2->me[i],s,(int)n,Z_NOCONJ);
- /**************************************************
- A1_e = A1->me[i];
- A2_e = A2->me[i];
- out_e = out->me[i];
- for ( j = 0; j < n; j++ )
- out_e[j] = A1_e[j] + s*A2_e[j];
- **************************************************/
- }
-
- return out;
- }
-
- /* zmv_mltadd -- matrix-vector multiply and add
- -- may not be in situ
- -- returns out == v1 + alpha*A*v2 */
- ZVEC *zmv_mltadd(v1,v2,A,alpha,out)
- ZVEC *v1, *v2, *out;
- ZMAT *A;
- complex alpha;
- {
- /* register int j; */
- int i, m, n;
- complex tmp, *v2_ve, *out_ve;
-
- if ( ! v1 || ! v2 || ! A )
- error(E_NULL,"zmv_mltadd");
- if ( out == v2 )
- error(E_INSITU,"zmv_mltadd");
- if ( v1->dim != A->m || v2->dim != A-> n )
- error(E_SIZES,"zmv_mltadd");
-
- tracecatch(out = zv_copy(v1,out),"zmv_mltadd");
-
- v2_ve = v2->ve; out_ve = out->ve;
- m = A->m; n = A->n;
-
- if ( alpha.re == 0.0 && alpha.im == 0.0 )
- return out;
-
- for ( i = 0; i < m; i++ )
- {
- tmp = __zip__(A->me[i],v2_ve,(int)n,Z_NOCONJ);
- out_ve[i].re += alpha.re*tmp.re - alpha.im*tmp.im;
- out_ve[i].im += alpha.re*tmp.im + alpha.im*tmp.re;
- /**************************************************
- A_e = A->me[i];
- sum = 0.0;
- for ( j = 0; j < n; j++ )
- sum += A_e[j]*v2_ve[j];
- out_ve[i] = v1->ve[i] + alpha*sum;
- **************************************************/
- }
-
- return out;
- }
-
- /* zvm_mltadd -- vector-matrix multiply and add a la zvm_mlt()
- -- may not be in situ
- -- returns out == v1 + v2*.A */
- ZVEC *zvm_mltadd(v1,v2,A,alpha,out)
- ZVEC *v1, *v2, *out;
- ZMAT *A;
- complex alpha;
- {
- int /* i, */ j, m, n;
- complex tmp, /* *A_e, */ *out_ve;
-
- if ( ! v1 || ! v2 || ! A )
- error(E_NULL,"zvm_mltadd");
- if ( v2 == out )
- error(E_INSITU,"zvm_mltadd");
- if ( v1->dim != A->n || A->m != v2->dim )
- error(E_SIZES,"zvm_mltadd");
-
- tracecatch(out = zv_copy(v1,out),"zvm_mltadd");
-
- out_ve = out->ve; m = A->m; n = A->n;
- for ( j = 0; j < m; j++ )
- {
- /* tmp = zmlt(v2->ve[j],alpha); */
- tmp.re = v2->ve[j].re*alpha.re - v2->ve[j].im*alpha.im;
- tmp.im = v2->ve[j].re*alpha.im + v2->ve[j].im*alpha.re;
- if ( tmp.re != 0.0 || tmp.im != 0.0 )
- __zmltadd__(out_ve,A->me[j],tmp,(int)n,Z_CONJ);
- /**************************************************
- A_e = A->me[j];
- for ( i = 0; i < n; i++ )
- out_ve[i] += A_e[i]*tmp;
- **************************************************/
- }
-
- return out;
- }
-
- /* zget_col -- gets a specified column of a matrix; returned as a vector */
- ZVEC *zget_col(mat,col,vec)
- int col;
- ZMAT *mat;
- ZVEC *vec;
- {
- u_int i;
-
- if ( mat==ZMNULL )
- error(E_NULL,"zget_col");
- if ( col < 0 || col >= mat->n )
- error(E_RANGE,"zget_col");
- if ( vec==ZVNULL || vec->dim<mat->m )
- vec = zv_resize(vec,mat->m);
-
- for ( i=0; i<mat->m; i++ )
- vec->ve[i] = mat->me[i][col];
-
- return (vec);
- }
-
- /* zget_row -- gets a specified row of a matrix and retruns it as a vector */
- ZVEC *zget_row(mat,row,vec)
- int row;
- ZMAT *mat;
- ZVEC *vec;
- {
- int /* i, */ lim;
-
- if ( mat==ZMNULL )
- error(E_NULL,"zget_row");
- if ( row < 0 || row >= mat->m )
- error(E_RANGE,"zget_row");
- if ( vec==ZVNULL || vec->dim<mat->n )
- vec = zv_resize(vec,mat->n);
-
- lim = min(mat->n,vec->dim);
-
- /* for ( i=0; i<mat->n; i++ ) */
- /* vec->ve[i] = mat->me[row][i]; */
- MEMCOPY(mat->me[row],vec->ve,lim,complex);
-
- return (vec);
- }
-
- /* zset_col -- sets column of matrix to values given in vec (in situ) */
- ZMAT *zset_col(mat,col,vec)
- ZMAT *mat;
- ZVEC *vec;
- int col;
- {
- u_int i,lim;
-
- if ( mat==ZMNULL || vec==ZVNULL )
- error(E_NULL,"zset_col");
- if ( col < 0 || col >= mat->n )
- error(E_RANGE,"zset_col");
- lim = min(mat->m,vec->dim);
- for ( i=0; i<lim; i++ )
- mat->me[i][col] = vec->ve[i];
-
- return (mat);
- }
-
- /* zset_row -- sets row of matrix to values given in vec (in situ) */
- ZMAT *zset_row(mat,row,vec)
- ZMAT *mat;
- ZVEC *vec;
- int row;
- {
- u_int /* j, */ lim;
-
- if ( mat==ZMNULL || vec==ZVNULL )
- error(E_NULL,"zset_row");
- if ( row < 0 || row >= mat->m )
- error(E_RANGE,"zset_row");
- lim = min(mat->n,vec->dim);
- /* for ( j=j0; j<lim; j++ ) */
- /* mat->me[row][j] = vec->ve[j]; */
- MEMCOPY(vec->ve,mat->me[row],lim,complex);
-
- return (mat);
- }
-
- /* zm_rand -- randomise a complex matrix; uniform in [0,1)+[0,1)*i */
- ZMAT *zm_rand(A)
- ZMAT *A;
- {
- int i;
-
- if ( ! A )
- error(E_NULL,"zm_rand");
-
- for ( i = 0; i < A->m; i++ )
- mrandlist((Real *)(A->me[i]),2*A->n);
-
- return A;
- }
-