home *** CD-ROM | disk | FTP | other *** search
-
- /**************************************************************************
- **
- ** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
- **
- ** Meschach Library
- **
- ** This Meschach Library is provided "as is" without any express
- ** or implied warranty of any kind with respect to this software.
- ** In particular the authors shall not be liable for any direct,
- ** indirect, special, incidental or consequential damages arising
- ** in any way from use of the software.
- **
- ** Everyone is granted permission to copy, modify and redistribute this
- ** Meschach Library, provided:
- ** 1. All copies contain this copyright notice.
- ** 2. All modified copies shall carry a notice stating who
- ** made the last modification and the date of such modification.
- ** 3. No charge is made for this software or works derived from it.
- ** This clause shall not be construed as constraining other software
- ** distributed on the same medium as this software, nor is a
- ** distribution fee considered a charge.
- **
- ***************************************************************************/
-
-
- /*
- File containing Lanczos type routines for finding eigenvalues
- of large, sparse, symmetic matrices
- */
-
- #include <stdio.h>
- #include <math.h>
- #include "matrix.h"
- #include "sparse.h"
-
- static char rcsid[] = "$Id: lanczos.c,v 1.4 1994/01/13 05:28:24 des Exp $";
-
- #ifdef ANSI_C
- extern VEC *trieig(VEC *,VEC *,MAT *);
- #else
- extern VEC *trieig();
- #endif
-
- /* lanczos -- raw lanczos algorithm -- no re-orthogonalisation
- -- creates T matrix of size == m,
- but no larger than before beta_k == 0
- -- uses passed routine to do matrix-vector multiplies */
- void lanczos(A_fn,A_params,m,x0,a,b,beta2,Q)
- VEC *(*A_fn)(); /* VEC *(*A_fn)(void *A_params,VEC *in, VEC *out) */
- void *A_params;
- int m;
- VEC *x0, *a, *b;
- Real *beta2;
- MAT *Q;
- {
- int j;
- VEC *v, *w, *tmp;
- Real alpha, beta;
-
- if ( ! A_fn || ! x0 || ! a || ! b )
- error(E_NULL,"lanczos");
- if ( m <= 0 )
- error(E_BOUNDS,"lanczos");
- if ( Q && ( Q->m < x0->dim || Q->n < m ) )
- error(E_SIZES,"lanczos");
-
- a = v_resize(a,(u_int)m); b = v_resize(b,(u_int)(m-1));
- v = v_get(x0->dim);
- w = v_get(x0->dim);
- tmp = v_get(x0->dim);
-
- beta = 1.0;
- /* normalise x0 as w */
- sv_mlt(1.0/v_norm2(x0),x0,w);
-
- (*A_fn)(A_params,w,v);
-
- for ( j = 0; j < m; j++ )
- {
- /* store w in Q if Q not NULL */
- if ( Q )
- set_col(Q,j,w);
-
- alpha = in_prod(w,v);
- a->ve[j] = alpha;
- v_mltadd(v,w,-alpha,v);
- beta = v_norm2(v);
- if ( beta == 0.0 )
- {
- v_resize(a,(u_int)j+1);
- v_resize(b,(u_int)j);
- *beta2 = 0.0;
- if ( Q )
- Q = m_resize(Q,Q->m,j+1);
- return;
- }
- if ( j < m-1 )
- b->ve[j] = beta;
- v_copy(w,tmp);
- sv_mlt(1/beta,v,w);
- sv_mlt(-beta,tmp,v);
- (*A_fn)(A_params,w,tmp);
- v_add(v,tmp,v);
- }
- *beta2 = beta;
-
-
- V_FREE(v); V_FREE(w); V_FREE(tmp);
- }
-
- extern double frexp(), ldexp();
-
- /* product -- returns the product of a long list of numbers
- -- answer stored in mant (mantissa) and expt (exponent) */
- static double product(a,offset,expt)
- VEC *a;
- double offset;
- int *expt;
- {
- Real mant, tmp_fctr;
- int i, tmp_expt;
-
- if ( ! a )
- error(E_NULL,"product");
-
- mant = 1.0;
- *expt = 0;
- if ( offset == 0.0 )
- for ( i = 0; i < a->dim; i++ )
- {
- mant *= frexp(a->ve[i],&tmp_expt);
- *expt += tmp_expt;
- if ( ! (i % 10) )
- {
- mant = frexp(mant,&tmp_expt);
- *expt += tmp_expt;
- }
- }
- else
- for ( i = 0; i < a->dim; i++ )
- {
- tmp_fctr = a->ve[i] - offset;
- tmp_fctr += (tmp_fctr > 0.0 ) ? -MACHEPS*offset :
- MACHEPS*offset;
- mant *= frexp(tmp_fctr,&tmp_expt);
- *expt += tmp_expt;
- if ( ! (i % 10) )
- {
- mant = frexp(mant,&tmp_expt);
- *expt += tmp_expt;
- }
- }
-
- mant = frexp(mant,&tmp_expt);
- *expt += tmp_expt;
-
- return mant;
- }
-
- /* product2 -- returns the product of a long list of numbers
- -- answer stored in mant (mantissa) and expt (exponent) */
- static double product2(a,k,expt)
- VEC *a;
- int k; /* entry of a to leave out */
- int *expt;
- {
- Real mant, mu, tmp_fctr;
- int i, tmp_expt;
-
- if ( ! a )
- error(E_NULL,"product2");
- if ( k < 0 || k >= a->dim )
- error(E_BOUNDS,"product2");
-
- mant = 1.0;
- *expt = 0;
- mu = a->ve[k];
- for ( i = 0; i < a->dim; i++ )
- {
- if ( i == k )
- continue;
- tmp_fctr = a->ve[i] - mu;
- tmp_fctr += ( tmp_fctr > 0.0 ) ? -MACHEPS*mu : MACHEPS*mu;
- mant *= frexp(tmp_fctr,&tmp_expt);
- *expt += tmp_expt;
- if ( ! (i % 10) )
- {
- mant = frexp(mant,&tmp_expt);
- *expt += tmp_expt;
- }
- }
- mant = frexp(mant,&tmp_expt);
- *expt += tmp_expt;
-
- return mant;
- }
-
- /* dbl_cmp -- comparison function to pass to qsort() */
- static int dbl_cmp(x,y)
- Real *x, *y;
- {
- Real tmp;
-
- tmp = *x - *y;
- return (tmp > 0 ? 1 : tmp < 0 ? -1: 0);
- }
-
- /* lanczos2 -- lanczos + error estimate for every e-val
- -- uses Cullum & Willoughby approach, Sparse Matrix Proc. 1978
- -- returns multiple e-vals where multiple e-vals may not exist
- -- returns evals vector */
- VEC *lanczos2(A_fn,A_params,m,x0,evals,err_est)
- VEC *(*A_fn)();
- void *A_params;
- int m;
- VEC *x0; /* initial vector */
- VEC *evals; /* eigenvalue vector */
- VEC *err_est; /* error estimates of eigenvalues */
- {
- VEC *a;
- static VEC *b=VNULL, *a2=VNULL, *b2=VNULL;
- Real beta, pb_mant, det_mant, det_mant1, det_mant2;
- int i, pb_expt, det_expt, det_expt1, det_expt2;
-
- if ( ! A_fn || ! x0 )
- error(E_NULL,"lanczos2");
- if ( m <= 0 )
- error(E_RANGE,"lanczos2");
-
- a = evals;
- a = v_resize(a,(u_int)m);
- b = v_resize(b,(u_int)(m-1));
- MEM_STAT_REG(b,TYPE_VEC);
-
- lanczos(A_fn,A_params,m,x0,a,b,&beta,MNULL);
-
- /* printf("# beta =%g\n",beta); */
- pb_mant = 0.0;
- if ( err_est )
- {
- pb_mant = product(b,(double)0.0,&pb_expt);
- /* printf("# pb_mant = %g, pb_expt = %d\n",pb_mant, pb_expt); */
- }
-
- /* printf("# diags =\n"); out_vec(a); */
- /* printf("# off diags =\n"); out_vec(b); */
- a2 = v_resize(a2,a->dim - 1);
- b2 = v_resize(b2,b->dim - 1);
- MEM_STAT_REG(a2,TYPE_VEC);
- MEM_STAT_REG(b2,TYPE_VEC);
- for ( i = 0; i < a2->dim - 1; i++ )
- {
- a2->ve[i] = a->ve[i+1];
- b2->ve[i] = b->ve[i+1];
- }
- a2->ve[a2->dim-1] = a->ve[a2->dim];
-
- trieig(a,b,MNULL);
-
- /* sort evals as a courtesy */
- qsort((void *)(a->ve),(int)(a->dim),sizeof(Real),(int (*)())dbl_cmp);
-
- /* error estimates */
- if ( err_est )
- {
- err_est = v_resize(err_est,(u_int)m);
-
- trieig(a2,b2,MNULL);
- /* printf("# a =\n"); out_vec(a); */
- /* printf("# a2 =\n"); out_vec(a2); */
-
- for ( i = 0; i < a->dim; i++ )
- {
- det_mant1 = product2(a,i,&det_expt1);
- det_mant2 = product(a2,(double)a->ve[i],&det_expt2);
- /* printf("# det_mant1=%g, det_expt1=%d\n",
- det_mant1,det_expt1); */
- /* printf("# det_mant2=%g, det_expt2=%d\n",
- det_mant2,det_expt2); */
- if ( det_mant1 == 0.0 )
- { /* multiple e-val of T */
- err_est->ve[i] = 0.0;
- continue;
- }
- else if ( det_mant2 == 0.0 )
- {
- err_est->ve[i] = HUGE;
- continue;
- }
- if ( (det_expt1 + det_expt2) % 2 )
- /* if odd... */
- det_mant = sqrt(2.0*fabs(det_mant1*det_mant2));
- else /* if even... */
- det_mant = sqrt(fabs(det_mant1*det_mant2));
- det_expt = (det_expt1+det_expt2)/2;
- err_est->ve[i] = fabs(beta*
- ldexp(pb_mant/det_mant,pb_expt-det_expt));
- }
- }
-
- return a;
- }
-
- /* sp_lanczos -- version that uses sparse matrix data structure */
- void sp_lanczos(A,m,x0,a,b,beta2,Q)
- SPMAT *A;
- int m;
- VEC *x0, *a, *b;
- Real *beta2;
- MAT *Q;
- { lanczos(sp_mv_mlt,A,m,x0,a,b,beta2,Q); }
-
- /* sp_lanczos2 -- version of lanczos2() that uses sparse matrix data
- structure */
- VEC *sp_lanczos2(A,m,x0,evals,err_est)
- SPMAT *A;
- int m;
- VEC *x0; /* initial vector */
- VEC *evals; /* eigenvalue vector */
- VEC *err_est; /* error estimates of eigenvalues */
- { return lanczos2(sp_mv_mlt,A,m,x0,evals,err_est); }
-
-