home *** CD-ROM | disk | FTP | other *** search
/ PC World Plus! (NZ) 2001 June / HDC50.iso / Info / Extras / Jpeg / SRC / JIDCTFST.C < prev    next >
C/C++ Source or Header  |  1999-08-11  |  13KB  |  368 lines

  1. /*
  2.  * jidctfst.c
  3.  *
  4.  * Copyright (C) 1994-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains a fast, not so accurate integer implementation of the
  9.  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
  10.  * must also perform dequantization of the input coefficients.
  11.  *
  12.  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  13.  * on each row (or vice versa, but it's more convenient to emit a row at
  14.  * a time).  Direct algorithms are also available, but they are much more
  15.  * complex and seem not to be any faster when reduced to code.
  16.  *
  17.  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  18.  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
  19.  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  20.  * JPEG textbook (see REFERENCES section in file README).  The following code
  21.  * is based directly on figure 4-8 in P&M.
  22.  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  23.  * possible to arrange the computation so that many of the multiplies are
  24.  * simple scalings of the final outputs.  These multiplies can then be
  25.  * folded into the multiplications or divisions by the JPEG quantization
  26.  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
  27.  * to be done in the DCT itself.
  28.  * The primary disadvantage of this method is that with fixed-point math,
  29.  * accuracy is lost due to imprecise representation of the scaled
  30.  * quantization values.  The smaller the quantization table entry, the less
  31.  * precise the scaled value, so this implementation does worse with high-
  32.  * quality-setting files than with low-quality ones.
  33.  */
  34.  
  35. #define JPEG_INTERNALS
  36. #include "jinclude.h"
  37. #include "jpeglib.h"
  38. #include "jdct.h"        /* Private declarations for DCT subsystem */
  39.  
  40. #ifdef DCT_IFAST_SUPPORTED
  41.  
  42.  
  43. /*
  44.  * This module is specialized to the case DCTSIZE = 8.
  45.  */
  46.  
  47. #if DCTSIZE != 8
  48.   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  49. #endif
  50.  
  51.  
  52. /* Scaling decisions are generally the same as in the LL&M algorithm;
  53.  * see jidctint.c for more details.  However, we choose to descale
  54.  * (right shift) multiplication products as soon as they are formed,
  55.  * rather than carrying additional fractional bits into subsequent additions.
  56.  * This compromises accuracy slightly, but it lets us save a few shifts.
  57.  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  58.  * everywhere except in the multiplications proper; this saves a good deal
  59.  * of work on 16-bit-int machines.
  60.  *
  61.  * The dequantized coefficients are not integers because the AA&N scaling
  62.  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
  63.  * so that the first and second IDCT rounds have the same input scaling.
  64.  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
  65.  * avoid a descaling shift; this compromises accuracy rather drastically
  66.  * for small quantization table entries, but it saves a lot of shifts.
  67.  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
  68.  * so we use a much larger scaling factor to preserve accuracy.
  69.  *
  70.  * A final compromise is to represent the multiplicative constants to only
  71.  * 8 fractional bits, rather than 13.  This saves some shifting work on some
  72.  * machines, and may also reduce the cost of multiplication (since there
  73.  * are fewer one-bits in the constants).
  74.  */
  75.  
  76. #if BITS_IN_JSAMPLE == 8
  77. #define CONST_BITS  8
  78. #define PASS1_BITS  2
  79. #else
  80. #define CONST_BITS  8
  81. #define PASS1_BITS  1        /* lose a little precision to avoid overflow */
  82. #endif
  83.  
  84. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  85.  * causing a lot of useless floating-point operations at run time.
  86.  * To get around this we use the following pre-calculated constants.
  87.  * If you change CONST_BITS you may want to add appropriate values.
  88.  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  89.  */
  90.  
  91. #if CONST_BITS == 8
  92. #define FIX_1_082392200  ((INT32)  277)        /* FIX(1.082392200) */
  93. #define FIX_1_414213562  ((INT32)  362)        /* FIX(1.414213562) */
  94. #define FIX_1_847759065  ((INT32)  473)        /* FIX(1.847759065) */
  95. #define FIX_2_613125930  ((INT32)  669)        /* FIX(2.613125930) */
  96. #else
  97. #define FIX_1_082392200  FIX(1.082392200)
  98. #define FIX_1_414213562  FIX(1.414213562)
  99. #define FIX_1_847759065  FIX(1.847759065)
  100. #define FIX_2_613125930  FIX(2.613125930)
  101. #endif
  102.  
  103.  
  104. /* We can gain a little more speed, with a further compromise in accuracy,
  105.  * by omitting the addition in a descaling shift.  This yields an incorrectly
  106.  * rounded result half the time...
  107.  */
  108.  
  109. #ifndef USE_ACCURATE_ROUNDING
  110. #undef DESCALE
  111. #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
  112. #endif
  113.  
  114.  
  115. /* Multiply a DCTELEM variable by an INT32 constant, and immediately
  116.  * descale to yield a DCTELEM result.
  117.  */
  118.  
  119. #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
  120.  
  121.  
  122. /* Dequantize a coefficient by multiplying it by the multiplier-table
  123.  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
  124.  * multiplication will do.  For 12-bit data, the multiplier table is
  125.  * declared INT32, so a 32-bit multiply will be used.
  126.  */
  127.  
  128. #if BITS_IN_JSAMPLE == 8
  129. #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
  130. #else
  131. #define DEQUANTIZE(coef,quantval)  \
  132.     DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
  133. #endif
  134.  
  135.  
  136. /* Like DESCALE, but applies to a DCTELEM and produces an int.
  137.  * We assume that int right shift is unsigned if INT32 right shift is.
  138.  */
  139.  
  140. #ifdef RIGHT_SHIFT_IS_UNSIGNED
  141. #define ISHIFT_TEMPS    DCTELEM ishift_temp;
  142. #if BITS_IN_JSAMPLE == 8
  143. #define DCTELEMBITS  16        /* DCTELEM may be 16 or 32 bits */
  144. #else
  145. #define DCTELEMBITS  32        /* DCTELEM must be 32 bits */
  146. #endif
  147. #define IRIGHT_SHIFT(x,shft)  \
  148.     ((ishift_temp = (x)) < 0 ? \
  149.      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
  150.      (ishift_temp >> (shft)))
  151. #else
  152. #define ISHIFT_TEMPS
  153. #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
  154. #endif
  155.  
  156. #ifdef USE_ACCURATE_ROUNDING
  157. #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
  158. #else
  159. #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
  160. #endif
  161.  
  162.  
  163. /*
  164.  * Perform dequantization and inverse DCT on one block of coefficients.
  165.  */
  166.  
  167. GLOBAL(void)
  168. jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  169.          JCOEFPTR coef_block,
  170.          JSAMPARRAY output_buf, JDIMENSION output_col)
  171. {
  172.   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  173.   DCTELEM tmp10, tmp11, tmp12, tmp13;
  174.   DCTELEM z5, z10, z11, z12, z13;
  175.   JCOEFPTR inptr;
  176.   IFAST_MULT_TYPE * quantptr;
  177.   int * wsptr;
  178.   JSAMPROW outptr;
  179.   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  180.   int ctr;
  181.   int workspace[DCTSIZE2];    /* buffers data between passes */
  182.   SHIFT_TEMPS            /* for DESCALE */
  183.   ISHIFT_TEMPS            /* for IDESCALE */
  184.  
  185.   /* Pass 1: process columns from input, store into work array. */
  186.  
  187.   inptr = coef_block;
  188.   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
  189.   wsptr = workspace;
  190.   for (ctr = DCTSIZE; ctr > 0; ctr--) {
  191.     /* Due to quantization, we will usually find that many of the input
  192.      * coefficients are zero, especially the AC terms.  We can exploit this
  193.      * by short-circuiting the IDCT calculation for any column in which all
  194.      * the AC terms are zero.  In that case each output is equal to the
  195.      * DC coefficient (with scale factor as needed).
  196.      * With typical images and quantization tables, half or more of the
  197.      * column DCT calculations can be simplified this way.
  198.      */
  199.     
  200.     if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
  201.      inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
  202.      inptr[DCTSIZE*7]) == 0) {
  203.       /* AC terms all zero */
  204.       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  205.  
  206.       wsptr[DCTSIZE*0] = dcval;
  207.       wsptr[DCTSIZE*1] = dcval;
  208.       wsptr[DCTSIZE*2] = dcval;
  209.       wsptr[DCTSIZE*3] = dcval;
  210.       wsptr[DCTSIZE*4] = dcval;
  211.       wsptr[DCTSIZE*5] = dcval;
  212.       wsptr[DCTSIZE*6] = dcval;
  213.       wsptr[DCTSIZE*7] = dcval;
  214.       
  215.       inptr++;            /* advance pointers to next column */
  216.       quantptr++;
  217.       wsptr++;
  218.       continue;
  219.     }
  220.     
  221.     /* Even part */
  222.  
  223.     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  224.     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  225.     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  226.     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  227.  
  228.     tmp10 = tmp0 + tmp2;    /* phase 3 */
  229.     tmp11 = tmp0 - tmp2;
  230.  
  231.     tmp13 = tmp1 + tmp3;    /* phases 5-3 */
  232.     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
  233.  
  234.     tmp0 = tmp10 + tmp13;    /* phase 2 */
  235.     tmp3 = tmp10 - tmp13;
  236.     tmp1 = tmp11 + tmp12;
  237.     tmp2 = tmp11 - tmp12;
  238.     
  239.     /* Odd part */
  240.  
  241.     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  242.     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  243.     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  244.     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  245.  
  246.     z13 = tmp6 + tmp5;        /* phase 6 */
  247.     z10 = tmp6 - tmp5;
  248.     z11 = tmp4 + tmp7;
  249.     z12 = tmp4 - tmp7;
  250.  
  251.     tmp7 = z11 + z13;        /* phase 5 */
  252.     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
  253.  
  254.     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
  255.     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
  256.     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
  257.  
  258.     tmp6 = tmp12 - tmp7;    /* phase 2 */
  259.     tmp5 = tmp11 - tmp6;
  260.     tmp4 = tmp10 + tmp5;
  261.  
  262.     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
  263.     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
  264.     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
  265.     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
  266.     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
  267.     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
  268.     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
  269.     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
  270.  
  271.     inptr++;            /* advance pointers to next column */
  272.     quantptr++;
  273.     wsptr++;
  274.   }
  275.   
  276.   /* Pass 2: process rows from work array, store into output array. */
  277.   /* Note that we must descale the results by a factor of 8 == 2**3, */
  278.   /* and also undo the PASS1_BITS scaling. */
  279.  
  280.   wsptr = workspace;
  281.   for (ctr = 0; ctr < DCTSIZE; ctr++) {
  282.     outptr = output_buf[ctr] + output_col;
  283.     /* Rows of zeroes can be exploited in the same way as we did with columns.
  284.      * However, the column calculation has created many nonzero AC terms, so
  285.      * the simplification applies less often (typically 5% to 10% of the time).
  286.      * On machines with very fast multiplication, it's possible that the
  287.      * test takes more time than it's worth.  In that case this section
  288.      * may be commented out.
  289.      */
  290.     
  291. #ifndef NO_ZERO_ROW_TEST
  292.     if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
  293.      wsptr[7]) == 0) {
  294.       /* AC terms all zero */
  295.       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
  296.                   & RANGE_MASK];
  297.       
  298.       outptr[0] = dcval;
  299.       outptr[1] = dcval;
  300.       outptr[2] = dcval;
  301.       outptr[3] = dcval;
  302.       outptr[4] = dcval;
  303.       outptr[5] = dcval;
  304.       outptr[6] = dcval;
  305.       outptr[7] = dcval;
  306.  
  307.       wsptr += DCTSIZE;        /* advance pointer to next row */
  308.       continue;
  309.     }
  310. #endif
  311.     
  312.     /* Even part */
  313.  
  314.     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
  315.     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
  316.  
  317.     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
  318.     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
  319.         - tmp13;
  320.  
  321.     tmp0 = tmp10 + tmp13;
  322.     tmp3 = tmp10 - tmp13;
  323.     tmp1 = tmp11 + tmp12;
  324.     tmp2 = tmp11 - tmp12;
  325.  
  326.     /* Odd part */
  327.  
  328.     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
  329.     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
  330.     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
  331.     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
  332.  
  333.     tmp7 = z11 + z13;        /* phase 5 */
  334.     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
  335.  
  336.     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
  337.     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
  338.     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
  339.  
  340.     tmp6 = tmp12 - tmp7;    /* phase 2 */
  341.     tmp5 = tmp11 - tmp6;
  342.     tmp4 = tmp10 + tmp5;
  343.  
  344.     /* Final output stage: scale down by a factor of 8 and range-limit */
  345.  
  346.     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
  347.                 & RANGE_MASK];
  348.     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
  349.                 & RANGE_MASK];
  350.     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
  351.                 & RANGE_MASK];
  352.     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
  353.                 & RANGE_MASK];
  354.     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
  355.                 & RANGE_MASK];
  356.     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
  357.                 & RANGE_MASK];
  358.     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
  359.                 & RANGE_MASK];
  360.     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
  361.                 & RANGE_MASK];
  362.  
  363.     wsptr += DCTSIZE;        /* advance pointer to next row */
  364.   }
  365. }
  366.  
  367. #endif /* DCT_IFAST_SUPPORTED */
  368.