home *** CD-ROM | disk | FTP | other *** search
- // Functor implementations -*- C++ -*-
-
- // Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 2, or (at your option)
- // any later version.
-
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
-
- // You should have received a copy of the GNU General Public License along
- // with this library; see the file COPYING. If not, write to the Free
- // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
- // USA.
-
- // As a special exception, you may use this file as part of a free software
- // library without restriction. Specifically, if other files instantiate
- // templates or use macros or inline functions from this file, or you compile
- // this file and link it with other files to produce an executable, this
- // file does not by itself cause the resulting executable to be covered by
- // the GNU General Public License. This exception does not however
- // invalidate any other reasons why the executable file might be covered by
- // the GNU General Public License.
-
- /*
- *
- * Copyright (c) 1994
- * Hewlett-Packard Company
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Hewlett-Packard Company makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- *
- *
- * Copyright (c) 1996-1998
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
-
- /** @file stl_function.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
- #ifndef _FUNCTION_H
- #define _FUNCTION_H 1
-
- namespace std
- {
- // 20.3.1 base classes
- /** @defgroup s20_3_1_base Functor Base Classes
- * Function objects, or @e functors, are objects with an @c operator()
- * defined and accessible. They can be passed as arguments to algorithm
- * templates and used in place of a function pointer. Not only is the
- * resulting expressiveness of the library increased, but the generated
- * code can be more efficient than what you might write by hand. When we
- * refer to "functors," then, generally we include function pointers in
- * the description as well.
- *
- * Often, functors are only created as temporaries passed to algorithm
- * calls, rather than being created as named variables.
- *
- * Two examples taken from the standard itself follow. To perform a
- * by-element addition of two vectors @c a and @c b containing @c double,
- * and put the result in @c a, use
- * \code
- * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
- * \endcode
- * To negate every element in @c a, use
- * \code
- * transform(a.begin(), a.end(), a.begin(), negate<double>());
- * \endcode
- * The addition and negation functions will be inlined directly.
- *
- * The standard functiors are derived from structs named @c unary_function
- * and @c binary_function. These two classes contain nothing but typedefs,
- * to aid in generic (template) programming. If you write your own
- * functors, you might consider doing the same.
- *
- * @{
- */
- /**
- * This is one of the @link s20_3_1_base functor base classes@endlink.
- */
- template <class _Arg, class _Result>
- struct unary_function
- {
- typedef _Arg argument_type; ///< @c argument_type is the type of the
- /// argument (no surprises here)
-
- typedef _Result result_type; ///< @c result_type is the return type
- };
-
- /**
- * This is one of the @link s20_3_1_base functor base classes@endlink.
- */
- template <class _Arg1, class _Arg2, class _Result>
- struct binary_function
- {
- typedef _Arg1 first_argument_type; ///< the type of the first argument
- /// (no surprises here)
-
- typedef _Arg2 second_argument_type; ///< the type of the second argument
- typedef _Result result_type; ///< type of the return type
- };
- /** @} */
-
- // 20.3.2 arithmetic
- /** @defgroup s20_3_2_arithmetic Arithmetic Classes
- * Because basic math often needs to be done during an algorithm, the library
- * provides functors for those operations. See the documentation for
- * @link s20_3_1_base the base classes@endlink for examples of their use.
- *
- * @{
- */
- /// One of the @link s20_3_2_arithmetic math functors@endlink.
- template <class _Tp>
- struct plus : public binary_function<_Tp, _Tp, _Tp>
- {
- _Tp
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x + __y; }
- };
-
- /// One of the @link s20_3_2_arithmetic math functors@endlink.
- template <class _Tp>
- struct minus : public binary_function<_Tp, _Tp, _Tp>
- {
- _Tp
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x - __y; }
- };
-
- /// One of the @link s20_3_2_arithmetic math functors@endlink.
- template <class _Tp>
- struct multiplies : public binary_function<_Tp, _Tp, _Tp>
- {
- _Tp
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x * __y; }
- };
-
- /// One of the @link s20_3_2_arithmetic math functors@endlink.
- template <class _Tp>
- struct divides : public binary_function<_Tp, _Tp, _Tp>
- {
- _Tp
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x / __y; }
- };
-
- /// One of the @link s20_3_2_arithmetic math functors@endlink.
- template <class _Tp>
- struct modulus : public binary_function<_Tp, _Tp, _Tp>
- {
- _Tp
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x % __y; }
- };
-
- /// One of the @link s20_3_2_arithmetic math functors@endlink.
- template <class _Tp>
- struct negate : public unary_function<_Tp, _Tp>
- {
- _Tp
- operator()(const _Tp& __x) const
- { return -__x; }
- };
- /** @} */
-
- // 20.3.3 comparisons
- /** @defgroup s20_3_3_comparisons Comparison Classes
- * The library provides six wrapper functors for all the basic comparisons
- * in C++, like @c <.
- *
- * @{
- */
- /// One of the @link s20_3_3_comparisons comparison functors@endlink.
- template <class _Tp>
- struct equal_to : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x == __y; }
- };
-
- /// One of the @link s20_3_3_comparisons comparison functors@endlink.
- template <class _Tp>
- struct not_equal_to : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x != __y; }
- };
-
- /// One of the @link s20_3_3_comparisons comparison functors@endlink.
- template <class _Tp>
- struct greater : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x > __y; }
- };
-
- /// One of the @link s20_3_3_comparisons comparison functors@endlink.
- template <class _Tp>
- struct less : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x < __y; }
- };
-
- /// One of the @link s20_3_3_comparisons comparison functors@endlink.
- template <class _Tp>
- struct greater_equal : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x >= __y; }
- };
-
- /// One of the @link s20_3_3_comparisons comparison functors@endlink.
- template <class _Tp>
- struct less_equal : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x <= __y; }
- };
- /** @} */
-
- // 20.3.4 logical operations
- /** @defgroup s20_3_4_logical Boolean Operations Classes
- * Here are wrapper functors for Boolean operations: @c &&, @c ||, and @c !.
- *
- * @{
- */
- /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
- template <class _Tp>
- struct logical_and : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x && __y; }
- };
-
- /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
- template <class _Tp>
- struct logical_or : public binary_function<_Tp, _Tp, bool>
- {
- bool
- operator()(const _Tp& __x, const _Tp& __y) const
- { return __x || __y; }
- };
-
- /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
- template <class _Tp>
- struct logical_not : public unary_function<_Tp, bool>
- {
- bool
- operator()(const _Tp& __x) const
- { return !__x; }
- };
- /** @} */
-
- // 20.3.5 negators
- /** @defgroup s20_3_5_negators Negators
- * The functions @c not1 and @c not2 each take a predicate functor
- * and return an instance of @c unary_negate or
- * @c binary_negate, respectively. These classes are functors whose
- * @c operator() performs the stored predicate function and then returns
- * the negation of the result.
- *
- * For example, given a vector of integers and a trivial predicate,
- * \code
- * struct IntGreaterThanThree
- * : public std::unary_function<int, bool>
- * {
- * bool operator() (int x) { return x > 3; }
- * };
- *
- * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
- * \endcode
- * The call to @c find_if will locate the first index (i) of @c v for which
- * "!(v[i] > 3)" is true.
- *
- * The not1/unary_negate combination works on predicates taking a single
- * argument. The not2/binary_negate combination works on predicates which
- * take two arguments.
- *
- * @{
- */
- /// One of the @link s20_3_5_negators negation functors@endlink.
- template <class _Predicate>
- class unary_negate
- : public unary_function<typename _Predicate::argument_type, bool>
- {
- protected:
- _Predicate _M_pred;
- public:
- explicit
- unary_negate(const _Predicate& __x) : _M_pred(__x) {}
-
- bool
- operator()(const typename _Predicate::argument_type& __x) const
- { return !_M_pred(__x); }
- };
-
- /// One of the @link s20_3_5_negators negation functors@endlink.
- template <class _Predicate>
- inline unary_negate<_Predicate>
- not1(const _Predicate& __pred)
- { return unary_negate<_Predicate>(__pred); }
-
- /// One of the @link s20_3_5_negators negation functors@endlink.
- template <class _Predicate>
- class binary_negate
- : public binary_function<typename _Predicate::first_argument_type,
- typename _Predicate::second_argument_type,
- bool>
- {
- protected:
- _Predicate _M_pred;
- public:
- explicit
- binary_negate(const _Predicate& __x)
- : _M_pred(__x) { }
-
- bool
- operator()(const typename _Predicate::first_argument_type& __x,
- const typename _Predicate::second_argument_type& __y) const
- { return !_M_pred(__x, __y); }
- };
-
- /// One of the @link s20_3_5_negators negation functors@endlink.
- template <class _Predicate>
- inline binary_negate<_Predicate>
- not2(const _Predicate& __pred)
- { return binary_negate<_Predicate>(__pred); }
- /** @} */
-
- // 20.3.6 binders
- /** @defgroup s20_3_6_binder Binder Classes
- * Binders turn functions/functors with two arguments into functors with
- * a single argument, storing an argument to be applied later. For
- * example, an variable @c B of type @c binder1st is constructed from a
- * functor @c f and an argument @c x. Later, B's @c operator() is called
- * with a single argument @c y. The return value is the value of @c f(x,y).
- * @c B can be "called" with various arguments (y1, y2, ...) and will in
- * turn call @c f(x,y1), @c f(x,y2), ...
- *
- * The function @c bind1st is provided to save some typing. It takes the
- * function and an argument as parameters, and returns an instance of
- * @c binder1st.
- *
- * The type @c binder2nd and its creator function @c bind2nd do the same
- * thing, but the stored argument is passed as the second parameter instead
- * of the first, e.g., @c bind2nd(std::minus<float>,1.3) will create a
- * functor whose @c operator() accepts a floating-point number, subtracts
- * 1.3 from it, and returns the result. (If @c bind1st had been used,
- * the functor would perform "1.3 - x" instead.
- *
- * Creator-wrapper functions like @c bind1st are intended to be used in
- * calling algorithms. Their return values will be temporary objects.
- * (The goal is to not require you to type names like
- * @c std::binder1st<std::plus<int>> for declaring a variable to hold the
- * return value from @c bind1st(std::plus<int>,5).
- *
- * These become more useful when combined with the composition functions.
- *
- * @{
- */
- /// One of the @link s20_3_6_binder binder functors@endlink.
- template <class _Operation>
- class binder1st
- : public unary_function<typename _Operation::second_argument_type,
- typename _Operation::result_type>
- {
- protected:
- _Operation op;
- typename _Operation::first_argument_type value;
- public:
- binder1st(const _Operation& __x,
- const typename _Operation::first_argument_type& __y)
- : op(__x), value(__y) {}
-
- typename _Operation::result_type
- operator()(const typename _Operation::second_argument_type& __x) const
- { return op(value, __x); }
-
- // _GLIBCXX_RESOLVE_LIB_DEFECTS
- // 109. Missing binders for non-const sequence elements
- typename _Operation::result_type
- operator()(typename _Operation::second_argument_type& __x) const
- { return op(value, __x); }
- };
-
- /// One of the @link s20_3_6_binder binder functors@endlink.
- template <class _Operation, class _Tp>
- inline binder1st<_Operation>
- bind1st(const _Operation& __fn, const _Tp& __x)
- {
- typedef typename _Operation::first_argument_type _Arg1_type;
- return binder1st<_Operation>(__fn, _Arg1_type(__x));
- }
-
- /// One of the @link s20_3_6_binder binder functors@endlink.
- template <class _Operation>
- class binder2nd
- : public unary_function<typename _Operation::first_argument_type,
- typename _Operation::result_type>
- {
- protected:
- _Operation op;
- typename _Operation::second_argument_type value;
- public:
- binder2nd(const _Operation& __x,
- const typename _Operation::second_argument_type& __y)
- : op(__x), value(__y) {}
-
- typename _Operation::result_type
- operator()(const typename _Operation::first_argument_type& __x) const
- { return op(__x, value); }
-
- // _GLIBCXX_RESOLVE_LIB_DEFECTS
- // 109. Missing binders for non-const sequence elements
- typename _Operation::result_type
- operator()(typename _Operation::first_argument_type& __x) const
- { return op(__x, value); }
- };
-
- /// One of the @link s20_3_6_binder binder functors@endlink.
- template <class _Operation, class _Tp>
- inline binder2nd<_Operation>
- bind2nd(const _Operation& __fn, const _Tp& __x)
- {
- typedef typename _Operation::second_argument_type _Arg2_type;
- return binder2nd<_Operation>(__fn, _Arg2_type(__x));
- }
- /** @} */
-
- // 20.3.7 adaptors pointers functions
- /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
- * The advantage of function objects over pointers to functions is that
- * the objects in the standard library declare nested typedefs describing
- * their argument and result types with uniform names (e.g., @c result_type
- * from the base classes @c unary_function and @c binary_function).
- * Sometimes those typedefs are required, not just optional.
- *
- * Adaptors are provided to turn pointers to unary (single-argument) and
- * binary (double-argument) functions into function objects. The
- * long-winded functor @c pointer_to_unary_function is constructed with a
- * function pointer @c f, and its @c operator() called with argument @c x
- * returns @c f(x). The functor @c pointer_to_binary_function does the same
- * thing, but with a double-argument @c f and @c operator().
- *
- * The function @c ptr_fun takes a pointer-to-function @c f and constructs
- * an instance of the appropriate functor.
- *
- * @{
- */
- /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
- template <class _Arg, class _Result>
- class pointer_to_unary_function : public unary_function<_Arg, _Result>
- {
- protected:
- _Result (*_M_ptr)(_Arg);
- public:
- pointer_to_unary_function() {}
-
- explicit
- pointer_to_unary_function(_Result (*__x)(_Arg))
- : _M_ptr(__x) {}
-
- _Result
- operator()(_Arg __x) const
- { return _M_ptr(__x); }
- };
-
- /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
- template <class _Arg, class _Result>
- inline pointer_to_unary_function<_Arg, _Result>
- ptr_fun(_Result (*__x)(_Arg))
- { return pointer_to_unary_function<_Arg, _Result>(__x); }
-
- /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
- template <class _Arg1, class _Arg2, class _Result>
- class pointer_to_binary_function
- : public binary_function<_Arg1, _Arg2, _Result>
- {
- protected:
- _Result (*_M_ptr)(_Arg1, _Arg2);
- public:
- pointer_to_binary_function() {}
-
- explicit
- pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
- : _M_ptr(__x) {}
-
- _Result
- operator()(_Arg1 __x, _Arg2 __y) const
- { return _M_ptr(__x, __y); }
- };
-
- /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
- template <class _Arg1, class _Arg2, class _Result>
- inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
- ptr_fun(_Result (*__x)(_Arg1, _Arg2))
- { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
- /** @} */
-
- template <class _Tp>
- struct _Identity : public unary_function<_Tp,_Tp>
- {
- _Tp&
- operator()(_Tp& __x) const
- { return __x; }
-
- const _Tp&
- operator()(const _Tp& __x) const
- { return __x; }
- };
-
- template <class _Pair>
- struct _Select1st : public unary_function<_Pair,
- typename _Pair::first_type>
- {
- typename _Pair::first_type&
- operator()(_Pair& __x) const
- { return __x.first; }
-
- const typename _Pair::first_type&
- operator()(const _Pair& __x) const
- { return __x.first; }
- };
-
- template <class _Pair>
- struct _Select2nd : public unary_function<_Pair,
- typename _Pair::second_type>
- {
- typename _Pair::second_type&
- operator()(_Pair& __x) const
- { return __x.second; }
-
- const typename _Pair::second_type&
- operator()(const _Pair& __x) const
- { return __x.second; }
- };
-
- // 20.3.8 adaptors pointers members
- /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
- * There are a total of 16 = 2^4 function objects in this family.
- * (1) Member functions taking no arguments vs member functions taking
- * one argument.
- * (2) Call through pointer vs call through reference.
- * (3) Member function with void return type vs member function with
- * non-void return type.
- * (4) Const vs non-const member function.
- *
- * Note that choice (3) is nothing more than a workaround: according
- * to the draft, compilers should handle void and non-void the same way.
- * This feature is not yet widely implemented, though. You can only use
- * member functions returning void if your compiler supports partial
- * specialization.
- *
- * All of this complexity is in the function objects themselves. You can
- * ignore it by using the helper function mem_fun and mem_fun_ref,
- * which create whichever type of adaptor is appropriate.
- *
- * @{
- */
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp>
- class mem_fun_t : public unary_function<_Tp*, _Ret>
- {
- public:
- explicit
- mem_fun_t(_Ret (_Tp::*__pf)())
- : _M_f(__pf) {}
-
- _Ret
- operator()(_Tp* __p) const
- { return (__p->*_M_f)(); }
- private:
- _Ret (_Tp::*_M_f)();
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp>
- class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
- {
- public:
- explicit
- const_mem_fun_t(_Ret (_Tp::*__pf)() const)
- : _M_f(__pf) {}
-
- _Ret
- operator()(const _Tp* __p) const
- { return (__p->*_M_f)(); }
- private:
- _Ret (_Tp::*_M_f)() const;
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp>
- class mem_fun_ref_t : public unary_function<_Tp, _Ret>
- {
- public:
- explicit
- mem_fun_ref_t(_Ret (_Tp::*__pf)())
- : _M_f(__pf) {}
-
- _Ret
- operator()(_Tp& __r) const
- { return (__r.*_M_f)(); }
- private:
- _Ret (_Tp::*_M_f)();
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp>
- class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
- {
- public:
- explicit
- const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
- : _M_f(__pf) {}
-
- _Ret
- operator()(const _Tp& __r) const
- { return (__r.*_M_f)(); }
- private:
- _Ret (_Tp::*_M_f)() const;
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp, class _Arg>
- class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
- {
- public:
- explicit
- mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
- : _M_f(__pf) {}
-
- _Ret
- operator()(_Tp* __p, _Arg __x) const
- { return (__p->*_M_f)(__x); }
- private:
- _Ret (_Tp::*_M_f)(_Arg);
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp, class _Arg>
- class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
- {
- public:
- explicit
- const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
- : _M_f(__pf) {}
-
- _Ret
- operator()(const _Tp* __p, _Arg __x) const
- { return (__p->*_M_f)(__x); }
- private:
- _Ret (_Tp::*_M_f)(_Arg) const;
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp, class _Arg>
- class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
- {
- public:
- explicit
- mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
- : _M_f(__pf) {}
-
- _Ret
- operator()(_Tp& __r, _Arg __x) const
- { return (__r.*_M_f)(__x); }
- private:
- _Ret (_Tp::*_M_f)(_Arg);
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Ret, class _Tp, class _Arg>
- class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
- {
- public:
- explicit
- const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
- : _M_f(__pf) {}
-
- _Ret
- operator()(const _Tp& __r, _Arg __x) const
- { return (__r.*_M_f)(__x); }
- private:
- _Ret (_Tp::*_M_f)(_Arg) const;
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp>
- class mem_fun_t<void, _Tp> : public unary_function<_Tp*, void>
- {
- public:
- explicit
- mem_fun_t(void (_Tp::*__pf)())
- : _M_f(__pf) {}
-
- void
- operator()(_Tp* __p) const
- { (__p->*_M_f)(); }
- private:
- void (_Tp::*_M_f)();
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp>
- class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*, void>
- {
- public:
- explicit
- const_mem_fun_t(void (_Tp::*__pf)() const)
- : _M_f(__pf) {}
-
- void
- operator()(const _Tp* __p) const
- { (__p->*_M_f)(); }
- private:
- void (_Tp::*_M_f)() const;
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp>
- class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp, void>
- {
- public:
- explicit
- mem_fun_ref_t(void (_Tp::*__pf)())
- : _M_f(__pf) {}
-
- void
- operator()(_Tp& __r) const
- { (__r.*_M_f)(); }
- private:
- void (_Tp::*_M_f)();
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp>
- class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp, void>
- {
- public:
- explicit
- const_mem_fun_ref_t(void (_Tp::*__pf)() const)
- : _M_f(__pf) {}
-
- void
- operator()(const _Tp& __r) const
- { (__r.*_M_f)(); }
- private:
- void (_Tp::*_M_f)() const;
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp, class _Arg>
- class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*, _Arg, void>
- {
- public:
- explicit
- mem_fun1_t(void (_Tp::*__pf)(_Arg))
- : _M_f(__pf) {}
-
- void
- operator()(_Tp* __p, _Arg __x) const
- { (__p->*_M_f)(__x); }
- private:
- void (_Tp::*_M_f)(_Arg);
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp, class _Arg>
- class const_mem_fun1_t<void, _Tp, _Arg>
- : public binary_function<const _Tp*, _Arg, void>
- {
- public:
- explicit
- const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const)
- : _M_f(__pf) {}
-
- void
- operator()(const _Tp* __p, _Arg __x) const
- { (__p->*_M_f)(__x); }
- private:
- void (_Tp::*_M_f)(_Arg) const;
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp, class _Arg>
- class mem_fun1_ref_t<void, _Tp, _Arg>
- : public binary_function<_Tp, _Arg, void>
- {
- public:
- explicit
- mem_fun1_ref_t(void (_Tp::*__pf)(_Arg))
- : _M_f(__pf) {}
-
- void
- operator()(_Tp& __r, _Arg __x) const
- { (__r.*_M_f)(__x); }
- private:
- void (_Tp::*_M_f)(_Arg);
- };
-
- /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
- template <class _Tp, class _Arg>
- class const_mem_fun1_ref_t<void, _Tp, _Arg>
- : public binary_function<_Tp, _Arg, void>
- {
- public:
- explicit
- const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const)
- : _M_f(__pf) {}
-
- void
- operator()(const _Tp& __r, _Arg __x) const
- { (__r.*_M_f)(__x); }
- private:
- void (_Tp::*_M_f)(_Arg) const;
- };
-
- // Mem_fun adaptor helper functions. There are only two:
- // mem_fun and mem_fun_ref.
- template <class _Ret, class _Tp>
- inline mem_fun_t<_Ret, _Tp>
- mem_fun(_Ret (_Tp::*__f)())
- { return mem_fun_t<_Ret, _Tp>(__f); }
-
- template <class _Ret, class _Tp>
- inline const_mem_fun_t<_Ret, _Tp>
- mem_fun(_Ret (_Tp::*__f)() const)
- { return const_mem_fun_t<_Ret, _Tp>(__f); }
-
- template <class _Ret, class _Tp>
- inline mem_fun_ref_t<_Ret, _Tp>
- mem_fun_ref(_Ret (_Tp::*__f)())
- { return mem_fun_ref_t<_Ret, _Tp>(__f); }
-
- template <class _Ret, class _Tp>
- inline const_mem_fun_ref_t<_Ret, _Tp>
- mem_fun_ref(_Ret (_Tp::*__f)() const)
- { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }
-
- template <class _Ret, class _Tp, class _Arg>
- inline mem_fun1_t<_Ret, _Tp, _Arg>
- mem_fun(_Ret (_Tp::*__f)(_Arg))
- { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
-
- template <class _Ret, class _Tp, class _Arg>
- inline const_mem_fun1_t<_Ret, _Tp, _Arg>
- mem_fun(_Ret (_Tp::*__f)(_Arg) const)
- { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
-
- template <class _Ret, class _Tp, class _Arg>
- inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
- mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
- { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
-
- template <class _Ret, class _Tp, class _Arg>
- inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
- mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
- { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
-
- /** @} */
-
- } // namespace std
-
- #endif /* _FUNCTION_H */
-
- // Local Variables:
- // mode:C++
- // End:
-