home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
PC World 1999 June
/
PCWorld_1999-06_cd.bin
/
software
/
temacd
/
basilisk
/
TECH
< prev
next >
Wrap
Text File
|
1999-04-15
|
28KB
|
508 lines
BASILISK II TECHNICAL MANUAL
============================
0. Table of Contents
--------------------
1. Introduction
2. Modes of operation
3. Memory access
4. Calling native routines from 68k mode and vice-versa
5. Interrupts
6. Parts of Basilisk II
7. Porting Basilisk II
1. Introduction
---------------
Basilisk II emulates a Mac II series computer ("Mac II series" here means all
68020/30/40 based Macs with 32-bit clean ROMs (this excludes the original
Mac II, the IIx/IIcx and the SE/030), except PowerBooks; in the following,
"Mac II" is used as an abbreviation of "Mac II series computer", as defined
above).
More precisely spoken, MacOS under Basilisk II behaves like on a Mac II
because, apart from the CPU, the RAM and the ROM, absolutely no Mac hardware
is emulated. Rather, Basilisk II provides replacements (usually in the form
of MacOS drivers) for the parts of MacOS that access hardware. As there are
practically no Mac applications that access hardware directly (this is also
due to the fact that the hardware of different Mac models is sometimes as
different as, say, the hardware of an Atari ST and an Amiga 500), both the
compatibility and speed of this approach are very high.
2. Modes of operation
---------------------
Basilisk II is designed to run on many different hardware platforms and on
many different operating systems. To provide optimal performance under all
environments, it can run in three different modes, depending on the features
of the underlying environment (the modes are selected with the REAL_ADDRESSING
and EMULATED_68K defines in "sysdeps.h"):
1. Emulated CPU, "virtual" addressing (EMULATED_68K = 1, REAL_ADDRESSING = 0):
This mode is designed for non-68k or little-endian systems or systems that
don't allow accessing RAM at 0x0000..0x1fff. The 68k processor is emulated
with the UAE CPU engine and two memory areas are allocated for Mac RAM and
ROM. The memory map seen by the emulated CPU and the host CPU are different.
Mac RAM starts at address 0 for the emulated 68k, but it may start at a
different address for the host CPU. All memory accesses of the CPU emulation
go through memory access functions (do_get_mem_long() etc.) that translate
addresses. This slows down the emulator, of course.
2. Emulated CPU, "real" addressing (EMULATED_68K = 1, REAL_ADDRESSING = 0):
This mode is intended for big-endian non-68k systems that do allow access to
RAM at 0x0000..0x1fff. As in the virtual addressing mode, the 68k processor
is emulated with the UAE CPU engine and two areas are set up for RAM and ROM
but the emulated CPU lives in the same address space as the host CPU.
This means that if something is located at a certain address for the 68k,
it is located at the exact same address for the host CPU. Mac addresses
and host addresses are the same. The memory accesses of the CPU emulation
still go through access functions but the address translation is no longer
needed, and if the host CPU uses big-endian data layout and can handle
unaligned accesses like the 68k, the memory access functions are replaced
by direct, inlined memory accesses, making for the fastest possible speed
of the emulator.
A usual consequence of the real addressing mode is that the Mac RAM doesn't
any longer begin at address 0 for the Mac and that the Mac ROM also is not
located where it usually is on a real Mac. But as the Mac ROM is relocatable
and the available RAM is defined for MacOS by the start of the system zone
(which is relocated to the start of the allocated RAM area) and the MemTop
variable (which is also set correctly) this is not a problem. There is,
however, one RAM area that must lie in a certain address range. This area
contains the Mac "Low Memory Globals" which (on a Mac II) are located at
0x0000..0x1fff and which cannot be moved to a different address range.
The Low Memory Globals constitute of many important MacOS and application
global variables (e.g. the above mentioned "MemTop" variable which is
located at 0x0108). For the real addressing mode to work, the host CPU
needs access to 0x0000..0x1fff. Under most operating systems, this is a
big problem. On some systems, patches (like PrepareEmul on the Amiga or
the sheep_driver under BeOS) can be installed to "open up" this area. On
other systems, it might be possible to use access exception handlers to
emulate accesses to this area. But if the Low Memory Globals area cannot
be made available, using the real addressing mode is not possible.
3. Native CPU (EMULATED_68K = 0, this also requires REAL_ADDRESSING = 1)
This mode is designed for systems that use a 68k (68020 or better) processor
as host CPU and is the technically most difficult mode to handle. The Mac
CPU is no longer emulated (the UAE CPU emulation is no longer needed) but
MacOS and Mac applications run natively on the existing 68k CPU. This means
that the emulator has its maximum possible speed (very close to that of
a real Mac with the same CPU). As there is no control over the memory
accesses of the CPU, real addressing mode is implied, and so the Low Memory
area must be accessible (an MMU might be used to set up different address
spaces for the Mac and the host, but this is not implemented in Basilisk II).
The native CPU mode has some possible pitfalls that might make its
implementation difficult on some systems:
a) Implied real addressing (this also means that Mac programs that go out
of control can crash the emulator or the whole system)
b) MacOS and Mac applications assume that they always run in supervisor
mode (more precisely, they assume that they can safely use certain
priviledged instructions, mostly for interrupt control). So either
the whole emulator has to be run in supervisor mode (which usually is
not possible on multitasking systems) or priviledged instructions have
to be trapped and emulated. The Amiga version of Basilisk II uses the
latter approach (it is possible to run supervisor mode tasks under
the AmigaOS multitasking kernel (ShapeShifter does this) but it
requires modifying the task switcher and makes the emulator more
unstable).
c) On multitasking systems, interrupts can usually not be handled as on
a real Mac (or with the UAE CPU). The interrupt levels of the host
will not be the same as on a Mac, and the operating systems might not
allow installing hardware interrupt handlers or the interrupt handlers
might have different stack frames and run-time environments than 68k
hardware interrupts. The usual solution is to use some sort of software
interrupts or signals to interrupt the main emulation process and to
manually call the Mac 68k interrupt handler with a faked stack frame.
d) 68060 systems are a small problem because there is no Mac that ever
used the 68060 and MacOS doesn't know about this processor. Basilisk II
reports the 68060 as being a 68040 to the MacOS and patches some places
where MacOS makes use of certain 68040-specific features such as the
FPU state frame layout or the PTEST instruction. Also, Basilisk II
requires that all of the Motorola support software for the 68060 to
emulate missing FPU and integer instructions and addressing modes is
provided by the host operating system (this also applies to the 68040).
e) The "EMUL_OP" mechanism described below requires the interception and
handling of certain emulator-defined instructions.
3. Memory access
----------------
There is often a need to access Mac RAM and ROM inside the emulator. As
Basilisk II may run in "real" or "virtual" addressing mode on many different
architectures, big-endian or little-endian, certain platform-independent
data types and functions are provided:
a) "sysdeps.h" defines the types int8, uint8, int16, uint16, int32 and uint32
for numeric quantities of a certain signedness and bit length
b) "cpu_emulation.h" defines the ReadMacInt*() and WriteMacInt*() functions
which should always be used to read from or write to Mac RAM or ROM
c) "cpu_emulation.h" also defines the Mac2HostAddr() function that translates
a Mac memory address to a (uint8 *) in host address space. This allows you
to access larger chunks of Mac memory directly, without going through the
read/write functions for every access. But doing so you have to perform
any needed endianess conversion of the data yourself by using the ntohs()
etc. macros which are available on most systems or defined in "sysdeps.h".
4. Calling native routines from 68k mode and vice-versa
-------------------------------------------------------
An emulator like Basilisk II requires two kinds of cross-platform function
calls:
a) Calling a native routine from the Mac 68k context
b) Calling a Mac 68k routine from the native context
Situation a) arises in nearly all Basilisk drivers and system patches while
case b) is needed for the invocation of Mac call-back or interrupt routines.
Basilisk II tries to solve both problems in a way that provides the same
interface whether it is running on a 68k or a non-68k system.
4.1. The EMUL_OP mechanism
--------------------------
Calling native routines from the Mac 68k context requires breaking out of the
68k emulator or interrupting the current instruction flow and is done via
unimplemented 68k opcodes (called "EMUL_OP" opcodes). Basilisk II uses opcodes
of the form 0x71xx (these are invalid MOVEQ opcodes) which are defined in
"emul_op.h". When such an opcode is encountered, whether by the emulated CPU
or a real 68k, the execution is interrupted, all CPU registers saved and the
EmulOp() function from "emul_op.cpp" is called. EmulOp() decides which opcode
caused the interrupt and performs the required actions (mostly by calling other
emulator routines). The EMUL_OP handler routines have access to nearly all of
the 68k user mode registers (exceptions being the PC, A7 and SR). So the
EMUL_OP opcodes can be thought of as extensions to the 68k instruction set.
Some of these opcodes are used to implement ROM or resource patches because
they only occupy 2 bytes and there is sometimes not more room for a patch.
4.2. Execute68k()
-----------------
"cpu_emulation.h" declares the functions Execute68k() and Execute68kTrap() to
call Mac 68k routines or MacOS system traps from inside an EMUL_OP handler
routine. They allow setting all 68k user mode registers (except PC and SR)
before the call and examining all register contents after the call has
returned. EMUL_OP and Execute68k() may be nested, i.e. a routine called with
Execute68k() may contain EMUL_OP opcodes and the EMUL_OP handlers may in turn
call Execute68k() again.
5. Interrupts
-------------
Various parts of Basilisk II (such as the Time Manager and the serial driver)
need an interrupt facility to trigger asynchronous events. The MacOS uses
different 68k interrupt levels for different events, but for simplicity
Basilisk II only uses level 1 and does it's own interrupt dispatching. The
"InterruptFlags" contains a bit mask of the pending interrupts. These are the
currently defined interrupt sources (see main.h):
INTFLAG_60HZ - MacOS 60Hz interrupt (unlike a real Mac, we also handle
VBL interrupts, ADB events and the Time Manager here)
INTFLAG_SERIAL - Interrupt for serial driver I/O completion
INTFLAG_ETHER - Interrupt for Ethernet driver I/O completion and packet
reception
An interrupt is triggered by calling SetInterruptFlag() with the desired
interrupt flag constant and then TriggerInterrupt(). When the UAE 68k
emulator is used, this will signal a hardware interrupt to the emulated 680x0.
On a native 68k machine, some other method for interrupting the MacOS thread
has to be used (e.g. on AmigaOS, a signal exception is used). Care has to be
taken because with the UAE CPU, the interrupt will only occur when Basilisk II
is executing MacOS code while on a native 68k machine, the interrupt could
occur at any time (e.g. inside an EMUL_OP handler routine). In any case, the
MacOS thread will eventually end up in the level 1 interrupt handler which
contains an M68K_EMUL_OP_IRQ opcode. The opcode handler in emul_op.cpp will
then look at InterruptFlags and decide which routines to call.
6. Parts of Basilisk II
-----------------------
The conception of Basilisk II is quite modular and consists of many parts
which are relatively independent from each other:
- UAE CPU engine ("uae_cpu/*", not needed on all systems)
- ROM patches ("rom_patches.cpp", "slot_rom.cpp" and "emul_op.cpp")
- resource patches ("rsrc_patches.cpp" and "emul_op.cpp")
- PRAM Utilities replacement ("xpram.cpp")
- ADB Manager replacement ("adb.cpp")
- Time Manager replacement ("timer.cpp")
- SCSI Manager replacement ("scsi.cpp")
- video driver ("video.cpp")
- floppy driver ("sony.cpp")
- disk driver ("disk.cpp")
- CD-ROM driver ("cdrom.cpp")
- serial drivers ("serial.cpp")
- Ethernet driver ("ether.cpp")
- system-dependant device access ("sys_*.cpp")
- user interface strings ("user_strings.cpp")
- preferences management ("prefs.cpp")
Most modules consist of a platform-independant part (such as video.cpp) and a
platform-dependant part (such as video_beos.cpp).
6.1. UAE CPU engine
-------------------
All files relating to the UAE 680x0 emulation are kept in the "uae_cpu"
directory. The "cpu_emulation.h" header file defines the link between the
UAE CPU and the rest of Basilisk II, and "basilisk_glue.cpp" implements the
link. It should be possible to replace the UAE CPU with a different 680x0
emulation by creating a new "xxx_cpu" directory with an appropriate
"cpu_emulation.h" header file (for the inlined memory access functions) and
writing glue code between the functions declared in "cpu_emulation.h" and
those provided by the 680x0 emulator.
6.2. ROM and resource patches
-----------------------------
As described above, instead of emulating custom Mac hardware, Basilisk II
provides replacements for certain parts of MacOS to redirect input, output
and system control functions of the Mac hardware to the underlying operating
systems. This is done by applying patches to the Mac ROM ("ROM patches") and
the MacOS system file ("resource patches", because nearly all system software
is contained in MacOS resources). Unless resources are written back to disk,
the system file patches are not permanent (it would cause many problems if
they were permanent, because some of the patches vary with different
versions of Basilisk II or even every time the emulator is launched).
ROM patches are contained in "rom_patches.cpp" and resource patches are
contained in "rsrc_patches.cpp". The ROM patches are far more numerous because
nearly all the software needed to run MacOS is contained in the Mac ROM (the
system file itself consists mainly of ROM patches, in addition to graphics and
text). One part of the ROM patches involves the construction of a NuBus slot
declaration ROM (in "slot_rom.cpp") which is used to add the video and Ethernet
drivers. Apart from the CPU emulation, the ROM and resource patches contain
most of the "logic" of the emulator.
6.3. PRAM Utilities
-------------------
MacOS stores certain nonvolatile system parameters in a 256 byte battery
backed-up CMOS RAM area called "Parameter RAM", "PRAM" or "XPRAM" (which refers
to "Extended PRAM" because the earliest Mac models only had 20 bytes of PRAM).
Basilisk II patches the ClkNoMem() MacOS trap which is used to access the XPRAM
(apart from some routines which are only used early during system startup)
and the real-time clock. The XPRAM is emulated in a 256 byte array which is
saved to disk to preserve the contents for the next time Basilisk is launched.
6.4. ADB Manager
----------------
For emulating a mouse and a keyboard, Basilisk II patches the ADBOp() MacOS
trap. Platform-dependant code reports mouse and keyboard events with the
ADBMouseDown() etc. functions which are queued and sent to MacOS inside the
ADBInterrupt() function (which is called as a part of the 60Hz interrupt
handler) by calling the ADB mouse and keyboard handlers with Execute68k().
6.5. Time Manager
-----------------
Basilisk II completely replaces the Time Manager (InsTime(), RmvTime(),
PrimeTime() and Microseconds() traps). A "TMDesc" structure is associated with
each Time Manager task, that contains additional data. The tasks are executed
in the TimerInterrupt() function which is currently called inside the 60Hz
interrupt handler, thus limiting the resolution of the Time Manager to 16.6ms.
6.6. SCSI Manager
-----------------
The (old-style) SCSI Manager is also completely replaced and the MacOS
SCSIDispatch() trap redirected to the routines in "scsi.cpp". Under the MacOS,
programs have to issue multiple calls for all the different phases of a
SCSI bus interaction (arbitration, selection, command transfer etc.).
Basilisk II maps this API to an atomic API which is used by most modern
operating systems. All action is deferred until the call to SCSIComplete().
The TIB (Transfer Instruction Block) mini-programs used by the MacOS are
translated into a scatter/gather list of data blocks. Operating systems that
don't support scatter/gather SCSI I/O will have to use buffering if more than
one data block is being transmitted. Some more advanced (but rarely used)
aspects of the SCSI Manager (like messaging and compare operations) are not
emulated.
6.7. Video driver
-----------------
The NuBus slot declaration ROM constructed in "slot_rom.cpp" contains a driver
definition for a video driver. The Control and Status calls of this driver are
implemented in "video.cpp". Run-time video mode and depth switching are
currently not supported.
The host-side initialization of the video system is done in VideoInit().
This function must provide access to a frame buffer for MacOS and supply
its address, resolution and color depth in a video_desc structure (there
is currently only one video_desc structure, called VideoMonitor; this is
going to change once multiple displays are supported). In real addressing
mode, this frame buffer must be in a MacOS compatible layout (big-endian
and 1, 2, 4 or 8 bits paletted chunky pixels, RGB 5:5:5 or xRGB 8:8:8:8).
In virtual addressing mode, the frame buffer is located at address
0xa0000000 on the Mac side and you have to supply the host address, size
and layout (BasiliskII will do an automatic pixel format conversion) in
the variables MacFrameBaseHost, MacFrameSize and MacFrameLayout.
6.8. Floppy, disk and CD-ROM drivers
------------------------------------
Basilisk II contains three MacOS drivers that implement floppy, disk and CD-ROM
access ("sony.cpp", "disk.cpp" and "cdrom.cpp"). They rely heavily on the
functionality provided by the "sys_*.cpp" module. BTW, the name ".Sony" of the
MacOS floppy driver comes from the fact that the 3.5" floppy drive in the first
Mac models was custom-built for Apple by Sony (this was one of the first
applications of the 3.5" floppy format which was also invented by Sony).
6.9. Serial drivers
-------------------
Similar to the disk drivers, Basilisk II contains replacement serial drivers
for the emulation of Mac modem and printer ports. To avoid duplicating code,
both ports are handled by the same set of routines. The SerialPrime() etc.
functions are mostly wrappers that determine which port is being accessed.
All the real work is done by the "SERDPort" class which is subclassed by the
platform-dependant code. There are two instances (for port A and B) of the
subclasses.
Unlike the disk drivers, the serial driver must be able to handle asynchronous
operations. Calls to SerialPrime() will usually not actually transmit or receive
data but delegate the action to an independant thread. SerialPrime() then
returns "1" to indicate that the I/O operation is not yet completed. The
completion of the I/O request is signalled by calling the MacOS trap "IODone".
However, this can't be done by the I/O thread because it's not in the right
run-time environment to call MacOS functions. Therefore it will trigger the
INTFLAG_SERIAL interrupt which causes the MacOS thread to eventually call
SerialInterrupt(). SerialInterrupt(), in turn, will not call IODone either but
install a Deferred Task to do the job. The Deferred Task will be called by
MacOS when it returns to interrupt level 0. This mechanism sounds complicated
but is necessary to ensure stable operation of the serial driver.
6.10. Ethernet driver
---------------------
A driver for Ethernet networking is also contained in the NuBus slot ROM.
Only one ethernet card can be handled by Basilisk II. For Ethernet to work,
Basilisk II must be able to send and receive raw Ethernet packets, including
the 14-byte header (destination and source address and type/length field),
but not including the 4-byte CRC. This may not be possible on all platforms
or it may require writing special net drivers or add-ons or running with
superuser priviledges to get access to the raw packets.
Writing packets works as in the serial drivers. The ether_write() routine may
choose to send the packet immediately (e.g. under BeOS) and return noErr or to
delegate the sending to a separate thread (e.g. under AmigaOS) and return "1" to
indicate that the operation is still in progress. For the latter case, a
Deferred Task structure is provided in the ether_data area to call IODone from
EtherInterrupt() when the packet write is complete (see above for a description
of the mechanism).
Packet reception is a different story. First of all, there are two methods
provided by the MacOS Ethernet driver API to read packets, one of which (ERead/
ERdCancel) is not supported by Basilisk II. Basilisk II only supports reading
packets by attaching protocol handlers. This shouldn't be a problem because
the only network code I've seen so far that uses ERead is some Apple sample
code. AppleTalk, MacTCP, MacIPX, OpenTransport etc. all use protocol handlers.
By attaching a protocol handler, the user of the Ethernet driver supplies a
handler routine that should be called by the driver upon reception of Ethernet
packets of a certain type. 802.2 packets (type/length field of 0..1500 in the
packet header) are a bit special: there can be only one protocol handler attached
for 802.2 packets (by specifying a packet type of "0"). The MacOS LAP Manager
will attach a 802.2 handler upon startup and handle the distribution of 802.2
packets to sub-protocol handlers, but the Basilisk II Ethernet driver is not
concerned with this.
When the driver receives a packet, it has to look up the protocol handler
installed for the respective packet type (if any has been installed at all)
and call the packet handler routine. This must be done with Execute68k() from
the MacOS thread, so an interrupt (INTFLAG_ETHER) is triggered upon reception
of a packet so the EtherInterrupt() routine can call the protocol handler.
Before calling the handler, the Ethernet packet header has to be copied to
MacOS RAM (the "ed_RHA" field of the ether_data structure is provided for this).
The protocol handler will read the packet data by means of the ReadPacket/ReadRest
routines supplied by the Ethernet driver. Both routines will eventually end up
in EtherReadPacket() which copies the data to Mac address space. EtherReadPacket()
requires the host address and length of the packet to be loaded to a0 and d1
before calling the protocol handler.
Does this sound complicated? You are probably right. Here is another description
of what happens upon reception of a packet:
1. Ethernet card receives packet and notifies some platform-dependant entity
inside Basilisk II
2. This entity will store the packet in some safe place and trigger the
INTFLAG_ETHER interrupt
3. The MacOS thread will execute the EtherInterrupt() routine and look for
received packets
4. If a packet was received of a type to which a protocol handler had been
attached, the packet header is copied to ed_RHA, a0/d1 are loaded with
the host address and length of the packet data, a3 is loaded with the
Mac address of the first byte behing ed_RHA and a4 is loaded with the
Mac address of the ed_ReadPacket code inside ether_data, and the protocol
handler is called with Execute68k()
5. The protocol handler will eventually try to read the packet data with
a "jsr (a4)" or "jsr 2(a4)"
6. This will execute an M68K_EMUL_OP_ETHER_READ_PACKET opcode
7. The EtherReadPacket() opcode handling routine will copy the requested
part of the packet data to Mac RAM using the pointer and length which are
still in a0/d1
For a more detailed description of the Ethernet driver, see "Inside AppleTalk".
6.11. System-dependant device access
------------------------------------
The method for accessing floppy drives, hard disks, CD-ROM drives and files
vary greatly between different operating systems. To make Basilisk II easily
portable, all device I/O is made via the functions declared in "sys.h" and
implemented by the (system-dependant) "sys_*.cpp" modules which provides a
standard, Unix-like interface to all kinds of devices.
6.12. User interface strings
----------------------------
To aid in localization, all user interface strings of Basilisk II are collected
in "user_strings.cpp" and accessed via the GetString() function. This way,
Basilisk II may be easily translated to different languages.
6.13. Preferences management
----------------------------
The module "prefs.cpp" handles user preferences in a system-independant way.
Preferences items are accessed with the PrefsAdd*(), PrefsReplace*() and
PrefsFind*() functions and stored in human-readable and editable text files
on disk. There are two lists of available preferences items. The first one,
common_prefs_items, defines the items which are available on all systems.
The second one, platform_prefs_items, is defined in prefs_*.cpp and lists
the prefs items which are specific to a certain platform.
7. Porting Basilisk II
----------------------
Porting Basilisk II to a new platform should not be hard. These are the steps
involved in the process:
1. Create a new directory inside the "src" directory for your platform. If
your platform comes in several "flavours" that require adapted files, you
should create subdirectories inside the platform directory. All files
needed for your port must be placed inside the new directory. Don't
scatter platform-dependant files across the "src" hierarchy.
2. Decide in which mode (virtual addressing, real addressing or native CPU)
Basilisk II will run.
3. Create a "sysdeps.h" file which defines the mode and system-dependant
data types and memory access functions. Things which are used in Basilisk
but missing on your platform (such as endianess macros) should also be
defined here.
4. Implement the system-specific parts of Basilisk:
main_*.cpp, sys_*.cpp, prefs_*.cpp, xpram_*.cpp, timer_*.cpp,
video_*.cpp, serial_*.cpp, scsi_*.cpp and clip_*.cpp
You may want to look at the implementation for other platforms before
writing your own.
5. Important things to remember:
- Use the ReadMacInt*() and WriteMacInt*() functions from "cpu_emulation.h"
to access Mac memory
- Use the ntohs() etc. macros to convert endianess when accessing Mac
memory directly
- Don't modify any source files outside of your platform directory unless
you really, really have to. Instead of adding "#ifdef PLATFORM" blocks
to one of the platform-independant source files, you should contact me
so that we may find a more elegant and more portable solution.
6. Coding style: indent -kr -ts4
Christian Bauer
<cbauer@iphcip1.physik.uni-mainz.de>