home *** CD-ROM | disk | FTP | other *** search
/ PC World Komputer 1997 February / PCWK0297.iso / technika / nnmodel / readme.txt < prev    next >
Text File  |  1996-05-13  |  9KB  |  183 lines

  1.                         What is NNMODEL
  2.  
  3. NNMODEL is a cost effective way of modeling process data, statistical experiments,
  4. or historical databases. It can find from simple linear to complex non-linear 
  5. relationships in empirical data. It is easy to use because it automatically 
  6. constructs mathematical models directly from your data. It enables you to create
  7. prototype models quickly and inexpensively. 
  8.  
  9. NNMODEL is designed to help you get maximum benefit from powerful neural network 
  10. modeling techniques without requiring you to learn a complicated software package
  11. or statistical language. Thus, you can learn how to use NNMODEL and start solving
  12. real world problems within a few hours. 
  13.  
  14. NNMODEL currently contains program modules to:
  15.  
  16.     Design a statistical experiment - NNMODEL allows you to create a data 
  17.     matrix based on a statistically designed experiment. A designed data matrix 
  18.     will allow you to squeeze the most information from a finite number of 
  19.     observations. The types of designs available are: two level, three level, 
  20.     simplex, star-simplex, central composite and multilevel. 
  21.  
  22.      Keyboard enter, file or clipboard import the data - There are three methods 
  23.     for entering data into NNMODEL: 1) Enter the data directly using the built in 
  24.     data matrix editor, 2) import an ASCII tab or blank delimited file or 3) paste 
  25.     data from the Windows clipboard.
  26.  
  27.      Run simple statistics and correlation reports - You can generate a report that 
  28.     contains the basic statistics, such as, number of observations, maximum, 
  29.     minimum, average, standard deviation and sum of squares. Or generate a 
  30.     correlation report contains the results Pearson Correlation Coefficients, 
  31.     Probability > |R| under Ho and Rho:=0 / N.
  32.  
  33.      Graphically analyze the raw data - You can view the data graphically using a 
  34.     variety of plotting routines including: trend plot by observation, XY scatter, 
  35.     frequency distribution, 3 dimensional scatter. Thumbnail views of all the data 
  36.     can be printed for the trend, scatter and distribution plots.
  37.  
  38.      Load historical data into a designed experiment matrix - A designed data 
  39.     matrix can be created as an empty shell and later loaded by the historical 
  40.     data loader. This imposes a designed experiment onto the historical data to 
  41.     better insure any resulting model's long term success. This method also has 
  42.     two side benefits, you get to see how much of the design space is really 
  43.     represented in the data and it generates a smaller training matrix so the 
  44.     training step proceeds faster.
  45.  
  46.      Advice on missing observations - After historical data has been loaded into a 
  47.     designed experiment the Missing Advisor can be used to suggest trials or 
  48.     treatments to run that would balance the design space. Thus, extracting 
  49.     more information from the data.
  50.      
  51.      Add equations or calculated columns to the data matrix - Columns of data 
  52.     can be created by defining an equation based on the other columns. A 
  53.     simple equation parser is built into the data matrix editor. Rows of data can 
  54.     be excluded from reports, graphs or models by using an exclude equation.
  55.      
  56.      Model the data using neural networks - The whole purpose of NNMODEL is 
  57.     to build neural models. A model can be created and trained in just a few 
  58.     minutes.
  59.  
  60.      Interrogate the model interactively - After a model has been trained you can 
  61.     immediately ask the model to predict using combination of input levels not 
  62.     seen in the data.
  63.  
  64.      Analyze the model's performance statistically - A modelÆs performance can 
  65.     be evaluated using standard R square statistics.
  66.  
  67.      Display the model's predictions graphically including 3D and contour plots - 
  68.     A number of graphs are available for validating a model including: measured 
  69.     vs. predicted, measured overlaid on predicted, residual plots, trends, scatter 
  70.     plots, frequency distributions, XY plots, 3D surface maps and contour plots.
  71.  
  72.      Test the model on additional external data sets - a test matrix can be loaded 
  73.     from data matrices not originally used to generate the model. This type of 
  74.     testing may be the only way of validating models generated from 
  75.     undesigned data.
  76.  
  77.      Perform sensitivity analysis - This analysis can show you how sensitive an 
  78.     output variable is to changes made to the inputs. The results are ranked in 
  79.     order with the variables with the most effect at the top of the list.
  80.  
  81.      Export the neural model as a transportable ASCII file - Trained models can 
  82.     be exported from NNMODEL to any other hardware platform. Neural models 
  83.     can be included with user software by linking with the NNLIB library.
  84.  
  85. Planned add-ons to NNMODEL:
  86.  
  87.      Multi-Module Optimizer  Combine one or more neural models with algebraic 
  88.     equations to minimize or maximize any combination of inputs, outputs or 
  89.     cost functions. The optimizer utilizes a Monte Carlo started constrained 
  90.     conjugate gradient algorithm to minimize the objective function. The 
  91.     objective function can be constructed from any or all inputs or outputs along 
  92.     with their polarity (min or max) and their relative weight. Inputs can be 
  93.     constrained rectilinearly, outputs are constrained by a penalty function. 
  94.     Results of the optimizations can be viewed using the interactive 
  95.     interrogation module, graphically or by viewing results log.
  96.  
  97.      Multi-Module Simulator  Combine one or more neural models with 
  98.     interpreted algebraic equations or pre-compiled user subroutines (user 
  99.     creates a DLL file). Simulator is an OLE container that can link with many 
  100.     graphical display modules and VBX controls. The simulator is designed 
  101.     using the source/sink concept. Data sources are ASCII files, OLE or DDE 
  102.     modules, models or equations. Sinks are reports, graphs, meters, equations 
  103.     or models.
  104.  
  105.      Attribute Data  Automatic conversion of Attribute data to a continuous 
  106.     variable based on a user defined rank or conversion to discrete logical 
  107.     variables (1 or 0). The continuous variable simply becomes one input to the 
  108.     model. However, the discrete variable creates as many inputs as there are 
  109.     states.
  110.  
  111.      Real Time Data Matrix Loader  Using the DDE interface automatically load a 
  112.     designed data matrix. The data matrix can be exported to be used to build a 
  113.     neural model. The neural model can then be used to control the process 
  114.     monitored by the DDE source.
  115.      
  116.      OODB Linkage  Allow the data matrix to be created directly from an open 
  117.     OODB database such as Microsoft Access.
  118.  
  119.  
  120. The following bugs have been fixed:
  121.  
  122.     Loading large files causes Windows error. There is a bug in the data matrix
  123.     loader that causes an application error while loading files with more than 
  124.     16000 records. 
  125.  
  126.     Export data matrix as ASCII. There is a missing carriage return and linefeed
  127.     after the UNITS line in th raw file. 
  128.  
  129.     Import string causes heap error. The maximum field size for a number/string
  130.     is 20 characters. If this is exceeded a memory overrun error is generated. 
  131.     To fix this problem shorten all fields to less than 20 characters. 
  132.     
  133.     Test data records are not appearing in neural model test matrix when editing
  134.     a 'V' into the RT field. To fix this problem press the "ReCalc" button on the
  135.     toolbar before creating the model. 
  136.  
  137.        Thumbnail graphs can only be printed starting at page 1. 
  138.  
  139.     Forgot to include header files for NNLIB. 
  140.  
  141.      
  142. The following new features have been added:
  143.  
  144.      Data Mining Utility  Allows the user to automatically set up a historical data 
  145.     matrix, identify variables as factors, responses or unknown, time position (up 
  146.     or down stream) in time units, use full dataset for modeling or select records 
  147.     from the database based on goodness of fit to a multi-level design, pick the 
  148.     best factors for inclusion into the model based on model performance, 
  149.     include or exclude factors for any model based on prior knowledge, report 
  150.     results of search. (NOTE: Not all function are working in version 1.21) To use
  151.     select "Data / Best Model Search".
  152.     
  153.     Train neural network from very large data matrix. The version allows an external
  154.     binary file to be used as the training matrix. To use build the binary file 
  155.     using the "Import Raw File" with the "Create Binary File" radio button checked.
  156.     The file can then be used during training by checking the "Model / Use Ext 
  157.     Binary File" menu item.
  158.  
  159. ***********************************************************************
  160.  
  161. This ZIP file contains the files necessary to install NNMODEL.  Copy
  162. nnmod121.zip to a temporary directory (C:\TMP) and unzip the archive 
  163. by typing: 
  164.  
  165. CD C:\TMP
  166. PKUNZIP NNMOD121 
  167.  
  168. Then from Window's program manager select File / Run and type:
  169.  
  170. C:\TMP\SETUP.EXE
  171.  
  172. The SETUP program will install NNMODEL onto your system.
  173.  
  174. If you distribute NNMODEL to friends, associates,  or to a computer bulletin
  175. board system (BBS), please distribute the file NNMOD121.ZIP rather than the 
  176. individual files. 
  177.  
  178. If you have any further questions, problems or program bugs please e-mail
  179. them to cbomgar@warwick.net or visit our home page at
  180.  
  181. http://www.wvtc.com/~carlb/
  182.  
  183.