home *** CD-ROM | disk | FTP | other *** search
/ PC World Komputer 1997 February / PCWK0297.iso / technika / formcalc / optics / optc446.equ < prev    next >
Text File  |  1993-12-04  |  3KB  |  32 lines

  1. "AST1CAL3 EQUATION VARIABLE","12-04-1993","12:29:37"
  2. "FOCAL_L1=1/(N[L1]/NZE(N[M])-1)/(1/NZE(R11)-1/NZE(R12)+(N[L1]/NZE(N[M])-1)*D1*N[M]/N[L1]/NZE(R11*R12)) H11=-(N[L1]/NZE(N[M])-1)*D1*FOCAL_L1/NZE(R12*N[L1]/NZE(N[M])) H12=-(N[L1]/NZE(N[M])-1)*D1*FOCAL_L1/NZE(R11*N[L1]/NZE(N[M])) FFL1=FOCAL_L1+H12 FOCAL_L2=1/(N[L2]/NZE(N[M])-1)/(1/NZE(R21)-1/NZE(R22)+(N[L2]/NZE(N[M])-1)*D2*N[M]/N[L2]/NZE(R21*R22)) H21=-(N[L2]/NZE(N[M])-1)*D2*FOCAL_L2/NZE(R22*N[L2]/NZE(N[M])) H22=-(N[L2]/NZE(N[M])-1)*D2*FOCAL_L2/NZE(R21*N[L2]/NZE(N[M])) BFL2=FOCAL_L2-H21 FOCAL_LENGTH=1/(1/FOCAL_L1+1/FOCAL_L2-D/FOCAL_L1/FOCAL_L2) H11_H1=FOCAL_LENGTH*D/FOCAL_L2 H22_H2=-FOCAL_LENGTH*D/FOCAL_L1 S[I]=1/NZE(1/FOCAL_LENGTH-1/S[O]) M[T]=-S[I]/NZE(S[O])"
  3. "LENS COMBINATIONS, THICK LENSES, GAUSSIAN FORMULA.                             Definitions of variables follow:                                FOCAL_L? = effective focal length of thick lens #?, ?=1 or 2                    H?1, H?2 = locations of first and second principal planes of lens #?, ?=1 or 2  FFL1, BFL2 = front focal length of lens #1, back focal length of lens #2        H??_H? = distance from princ. plane of lens #? to system princ. plane.          FOCAL_LENGTH = system focal length measured from system princ. planes           S[I], S[O] = image and object distances of system                               M[T] = transverse magnitization of system                                       D = distance from lens #1 second princ. plane to lens #2 first princ. plane     D? = distances between princ. planes of each thick lens                         N[L?] = index of lense #?,  N[M] = index of medium (air = 1)                    R?1, R?2 = radii of curvature of lens #?, ?=1 or 2                              Note: distances to right are considered +.                                                                                     (c) Copyright PCSCC, Inc., 1993  *** Answer(s) to problem ***                                                    Note: variables are set to proper values at entry. The ant is (90+57.7)mm in    front of lens #1 and its image is (40.9+115.4)mm behind lens #2.  Note, thin    lenses are assumed, D1=D2=0 and H11=H12=0 H21=H22=0.     Type any key to exit.                 || A bi-concave lens (radius=-50 mm, index=1.6) is positioned    150 mm up a plastic tube in front of a plano-convex lens (radius 50 mm, index   1.6). Calculate the image location of a 9 mm carpenter ant 90 mm in front of thedevice. Type comma key to see answer.  Type (F2) to return to application file."
  4. 24
  5. -41.66666666666667,0,""
  6. 0,0,""
  7. 0,0,""
  8. -41.66666666666667,0,""
  9. 83.33750020834375,0,""
  10. 0,0,""
  11. 0,0,""
  12. 83.33750020834375,0,""
  13. 32.05411760783967,0,""
  14. 57.6945268235267,0,""
  15. 115.3948233882228,0,""
  16. 40.93912988499994,0,""
  17. -.2771878604135155,0,""
  18. 1,0,""
  19. 1.6,0,""
  20. -50,0,""
  21. 50,0,""
  22. 0,0,""
  23. 1.6,0,""
  24. 50,0,""
  25. 1000000,0,""
  26. 0,0,""
  27. 150,0,""
  28. 147.6945268235267,0,""
  29. 1
  30. 0
  31. 0
  32.