home *** CD-ROM | disk | FTP | other *** search
/ PC World Komputer 1997 February / PCWK0297.iso / technika / formcalc / optics / optc431.equ < prev    next >
Text File  |  1993-10-24  |  2KB  |  17 lines

  1. "AST1CAL3 EQUATION VARIABLE","10-24-1993","17:23:25"
  2. "S[I]=(F2*D-(F1*F2*S[O]/NZE(S[O]-F1)))/NZE(D-F2-(F1*S[O]/NZE(S[O]-F1))) M[T]=F1*S[I]/NZE(D*(S[O]-F1)-S[O]*F1) FRONT_FOCAL_LENGTH=F1*(D-F2)/NZE(D-(F1+F2)) BACK_FOCAL_LENGTH=F2*(D-F1)/NZE(D-(F1+F2)) DIOPTRIC_POWER=1/NZE(F1)+1/NZE(F2)"
  3. "COMPOUND THIN LENSES, MAGNIFICATION, MICROSCOPE.               S[I] ≡ Distance from lens #2 to rear image.                                     M[T] ≡ Total magnification, M[T] = M[T1] * M[T2]                                FRONT_FO ≡ When S[I]=∞, distance in front of lens #1                            BACK_FOC ≡ When S[O]=∞, distance behind lense #2                                DIOPTRIC ≡ Dioptric power = 1/f1 + 1/f2                                         D ≡ Distance bewteen two thin mirrors.                                          F1 ≡ Focal length of lens #1 in front of it.                                    F2 ≡ Focal length of lens #2 behind it.                                         S[O] ≡ Distance from lens #1 to front object.                                                                                                                   *** Answer(s) to problem ***                   (c) Copyright PCSCC, Inc., 1993  Variables are set to proper values at entry.  (a) S[I]=-8. It is located  8 cm  below the top lens. (b) Ant's image is virtual, inverted, 8 cm below top lens   and magnified by 4 times. You may want to plot S[I] vs D.  Remember S[I] must   be in the 10 cm tube or -10<S[I]<0. To plot, type 'ina #dep (enter) then        'act s[i] (enter). Move cursor to D. Type P then (end esc) 1 to 8 (enter).      Type any key to exit plot.                                                                     ||A low cost microscope is fabricated out of a bottom lens of 2  cm focal length, a 10 cm cardboard tube and a top lens with a 8 cm focal length.(a) Locate the image of an ant 3 cm from the bottom lens. (b) Describe the ant.                                                                                      Type comma key to see answer. Type (F2) to return to application file."
  4. 9
  5. -8,0,""
  6. -4,0,""
  7. 4D+30,0,""
  8. 6.4D+31,0,""
  9. .625,0,""
  10. 3,0,""
  11. 2,0,""
  12. 8,0,""
  13. 10,0,""
  14. 1
  15. 0
  16. 0
  17.