home *** CD-ROM | disk | FTP | other *** search
/ PC World Komputer 1998 July & August / Pcwk78a98.iso / Sharewar / GWAVE4 / EXPRESS.EQX next >
INI File  |  1998-03-30  |  3KB  |  64 lines

  1. [Group List]
  2. Waves=1
  3. Dial tones=1
  4. Effects=1
  5. Noise=1
  6. Music=1
  7. Harmonics=1
  8.  
  9. [Waves]
  10. Triangle, f is freq=1-2*abs(1-2*f*t%2)
  11. Sine, f is freq in Hz=sin(2*pi*f*t)
  12. Square, f is freq=cos(pi*int(2*f*t))
  13. Sweep=sin( pi*300*t^2 )
  14. Fast square=int(2*t*f)%2*2-1
  15. Full scale sweep=sin(pi*t*(n/N/T/2))
  16. Sweep to f=sin(pi*t*(n/N*f))
  17. Slow beat=0.5*sin(2*pi*t*f)+0.5*sin(2*pi*t*f*1.01)
  18. FM, 2 at 2%=sin(2*pi*f*t+f*sin(2*pi*t*2)*.02)
  19. FM, 10 at 2%=sin(2*pi*f*t+f*sin(2*pi*t*10)*.02)
  20. Beam fade=sin(5000*t+sin(300*t*t*exp(-t/4))*5)*exp(-t/3)
  21. Overload=sin(1000*t+sin(300*t*t)*5)
  22. Deep presence=sin(2*pi*2*t*(1+(1+sin(2*pi*t*50))/4))*exp(-t*.6)
  23. Soft ping=sin(2*pi*t*f)*exp(-t*4)*(1-exp(-t*10))*2
  24. Hard ping=sin(2*pi*t*f)*exp(-t*4)
  25. FM, 2 at 2% double=(sin(2*pi*f*t+f*sin(2*pi*t*2)*.03)+sin(2*pi*f*1.1*t+f*1.1*sin(2*pi*-t*2)*.03)) / 2
  26. Tick at 1 second=step(-int(t-T)%2) - step(-int(t+T)%2)
  27.  
  28. [Dial Tones]
  29. 1=(sin(4379*t)+sin(7596*t))/2
  30. 2=(sin(4379*t)+sin(8394*t))/2
  31. 3=(sin(4379*t)+sin(9280*t))/2
  32. A=(sin(4379*t)+sin(10260*t))/2
  33. 4=(sin(4838*t)+sin(7596*t))/2
  34. 5=(sin(4838*t)+sin(8394*t))/2
  35. 6=(sin(4838*t)+sin(9280*t))/2
  36. B=(sin(4838*t)+sin(10260*t))/2
  37. 7=(sin(5353*t)+sin(7596*t))/2
  38. 8=(sin(5353*t)+sin(8394*t))/2
  39. 9=(sin(5353*t)+sin(9280*t))/2
  40. C=(sin(5353*t)+sin(10260*t))/2
  41. *=(sin(5912*t)+sin(7596*t))/2
  42. 0=(sin(5912*t)+sin(8394*t))/2
  43. #=(sin(5912*t)+sin(9280*t))/2
  44. D=(sin(5912*t)+sin(10260*t))/2
  45. "987-6543"=(sin(5353*t)+sin(9280*t))/2*(step(t-.1)-step(t-.22)) + (sin(5353*t)+sin(8394*t))/2*(step(t-.3)-step(t-.42)) + (sin(5353*t)+sin(7596*t))/2*(step(t-.5)-step(t-.62)) + (sin(4838*t)+sin(9280*t))/2*(step(t-.7)-step(t-.82)) + (sin(4838*t)+sin(8394*t))/2*(step(t-.9)-step(t-1.02)) + (sin(4838*t)+sin(7596*t))/2*(step(t-1.1)-step(t-1.22)) + (sin(4379*t)+sin(9280*t))/2*(step(t-1.3)-step(t-1.42))
  46.  
  47. [Effects]
  48. Tremolo, try f < 10=wave(n) * (0.6 + 0.4 * sin(2*pi*f*t))
  49.  
  50. [Noise]
  51. Brown=wave1(n-1)+rand(0.5)-0.25
  52. White=rand(2)-1
  53. Add hiss to wave=wave(n)+(rand(0.02)-0.01)
  54.  
  55. [Music]
  56. Twinkle on xylophone=(sin(2*261*pi*t)*(step(t)-step(t-1))+ sin(2*392*pi*t)*(step(t-1)-step(t-2))+ sin(2*440*pi*t)*(step(t-2)-step(t-3))+ sin(2*392*pi*t)*(step(t-3)-step(t-3.5))+ sin(2*349*pi*t)*(step(t-4)-step(t-5))+ sin(2*329*pi*t)*(step(t-5)-step(t-6))+ sin(2*293*pi*t)*(step(t-6)-step(t-7))+ sin(2*261*pi*t)*(step(t-7)-step(t-7.5)))*(1-2*abs(1-2*.5*t%.5))
  57.  
  58. [Harmonics]
  59. Chord1=0.3*sin(2*pi*t*f)+0.3*sin(2*pi*t*f*1.2599)+0.3*sin(2*pi*t*f*1.4983)
  60. Chord2=0.3*sin(2*pi*t*f)+0.3*sin(2*pi*t*f*1.3348)+0.3*sin(2*pi*t*f*1.6818)
  61. Even and equal=(sin(2*pi*t*f)+sin(2*pi*t*f*2)+sin(2*pi*t*f*4)+sin(2*pi*t*f*6))/4
  62. Odd and equal=(sin(2*pi*t*f)+sin(2*pi*t*f*3)+sin(2*pi*t*f*5)+sin(2*pi*t*f*7))/4
  63.  
  64.