home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
PC World Komputer 1998 July & August
/
Pcwk78a98.iso
/
Internet
/
Javadraw
/
DATA.Z
/
Math.java
< prev
next >
Wrap
Text File
|
1997-08-30
|
19KB
|
531 lines
/*
* @(#)Math.java 1.24 97/01/31
*
* Copyright (c) 1995, 1996 Sun Microsystems, Inc. All Rights Reserved.
*
* This software is the confidential and proprietary information of Sun
* Microsystems, Inc. ("Confidential Information"). You shall not
* disclose such Confidential Information and shall use it only in
* accordance with the terms of the license agreement you entered into
* with Sun.
*
* SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
* SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
* IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES
* SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING
* THIS SOFTWARE OR ITS DERIVATIVES.
*
* CopyrightVersion 1.1_beta
*
*/
package java.lang;
import java.util.Random;
/**
* The class <code>Math</code> contains methods for performing basic
* numeric operations such as the elementary exponential, logarithm,
* square root, and trigonometric functions.
* <p>
* To help ensure portability of Java programs, the definitions of
* many of the numeric functions in this package require that they
* produce the same results as certain published algorithms. These
* algorithms are available from the well-known network library
* <code>netlib</code> as the package "Freely Distributable
* Math Library" (<code>fdlibm</code>). These algorithms, which
* are written in the C programming language, are then to be
* understood as executed with all floating-point operations
* following the rules of Java floating-point arithmetic.
* <p>
* The network library may be found on the World Wide Web at
* <ul><code>
* http://netlib.att.com/
* </code></ul>
* <p>
* then perform a keyword search for "<code>fdlibm</code>".
* <p>
* The Java math library is defined with respect to the version of
* <code>fdlibm</code> dated January 4, 1995. Where
* <code>fdlibm</code> provides more than one definition for a
* function (such as <code>acos</code>), use the "IEEE 754 core
* function" version (residing in a file whose name begins with
* the letter <code>e</code>).
*
* @author unascribed
* @version 1.24, 01/31/97
* @since JDK1.0
*/
public final class Math {
/**
* Don't let anyone instantiate this class.
*/
private Math() {}
/**
* The <code>double</code> value that is closer than any other to
* <code>e</code>, the base of the natural logarithms.
*
* @since JDK1.0
*/
public static final double E = 2.7182818284590452354;
/**
* The <code>double</code> value that is closer than any other to
* <i>pi</i>, the ratio of the circumference of a circle to its diameter.
*
* @since JDK1.0
*/
public static final double PI = 3.14159265358979323846;
/**
* Returns the trigonometric sine of an angle.
*
* @param a an angle, in radians.
* @return the sine of the argument.
* @since JDK1.0
*/
public static native double sin(double a);
/**
* Returns the trigonometric cosine of an angle.
*
* @param a an angle, in radians.
* @return the cosine of the argument.
* @since JDK1.0
*/
public static native double cos(double a);
/**
* Returns the trigonometric tangent of an angle.
*
* @param a an angle, in radians.
* @return the tangent of the argument.
* @since JDK1.0
*/
public static native double tan(double a);
/**
* Returns the arc sine of an angle, in the range of -<i>pi</i>/2 through
* <i>pi</i>/2.
*
* @param a an angle, in radians.
* @return the arc sine of the argument.
* @since JDK1.0
*/
public static native double asin(double a);
/**
* Returns the arc cosine of an angle, in the range of 0.0 through
* <i>pi</i>.
*
* @param a an angle, in radians.
* @return the arc cosine of the argument.
* @since JDK1.0
*/
public static native double acos(double a);
/**
* Returns the arc tangent of an angle, in the range of -<i>pi</i>/2
* through <i>pi</i>/2.
*
* @param a an angle, in radians.
* @return the arc tangent of the argument.
* @since JDK1.0
*/
public static native double atan(double a);
/**
* Returns the exponential number <i>e</i> (i.e., 2.718...) raised to
* the power of a <code>double</code> value.
*
* @param a a <code>double</code> value.
* @return the value <i>e</i><sup>a</sup>, where <i>e</i> is the base of
* the natural logarithms.
* @since JDK1.0
*/
public static native double exp(double a);
/**
* Returns the natural logarithm (base <i>e</i>) of a <code>double</code>
* value.
*
* @param a a number greater than <code>0.0</code>.
* @return the value ln <code>a</code>, the natural logarithm of
* <code>a</code>.
* @since JDK1.0
*/
public static native double log(double a);
/**
* Returns the square root of a <code>double</code> value.
*
* @param a a <code>double</code> value.
* <!--@return the value of √ <code>a</code>.-->
* @return the square root of <code>a</code>.
* If the argument is NaN or less than zero, the result is NaN.
* @since JDK1.0
*/
public static native double sqrt(double a);
/**
* Computes the remainder operation on two arguments as prescribed
* by the IEEE 754 standard.
* The remainder value is mathematically equal to
* <code>f1 - f2</code> × <i>n</i>,
* where <i>n</i> is the mathematical integer closest to the exact
* mathematical value of the quotient <code>f1/f2</code>, and if two
* mathematical integers are equally close to <code>f1/f2</code>,
* then <i>n</i> is the integer that is even. If the remainder is
* zero, its sign is the same as the sign of the first argument.
*
* @param f1 the dividend.
* @param f2 the divisor.
* @return the remainder when <code>f1</code> is divided by
* <code>f2</code>.
* @since JDK1.0
*/
public static native double IEEEremainder(double f1, double f2);
/**
* Returns the smallest (closest to negative infinity)
* <code>double</code> value that is not less than the argument and is
* equal to a mathematical integer.
*
* @param a a <code>double</code> value.
* <!--@return the value ⌈ <code>a</code> ⌉.-->
* @return the smallest (closest to negative infinity)
* <code>double</code> value that is not less than the argument
* and is equal to a mathematical integer.
* @since JDK1.0
*/
public static native double ceil(double a);
/**
* Returns the largest (closest to positive infinity)
* <code>double</code> value that is not greater than the argument and
* is equal to a mathematical integer.
*
* @param a a <code>double</code> value.
* @param a an assigned value.
* <!--@return the value ⌊ <code>a</code> ⌋.-->
* @return the largest (closest to positive infinity)
* <code>double</code> value that is not greater than the argument
* and is equal to a mathematical integer.
* @since JDK1.0
*/
public static native double floor(double a);
/**
* returns the closest integer to the argument.
*
* @param a a <code>double</code> value.
* @return the closest <code>double</code> value to <code>a</code> that is
* equal to a mathematical integer. If two <code>double</code>
* values that are mathematical integers are equally close to the
* value of the argument, the result is the integer value that
* is even.
* @since JDK1.0
*/
public static native double rint(double a);
/**
* Converts rectangular coordinates (<code>b</code>, <code>a</code>)
* to polar (r, <i>theta</i>).
* This method computes the phase <i>theta</i> by computing an arc tangent
* of <code>b/a</code> in the range of -<i>pi</i> to <i>pi</i>.
*
* @param a a <code>double</code> value.
* @param b a <code>double</code> value.
* @return the <i>theta</i> component of the point
* (<i>r</i>, <i>theta</i>)
* in polar coordinates that corresponds to the point
* (<i>b</i>, <i>a</i>) in Cartesian coordinates.
* @since JDK1.0
*/
public static native double atan2(double a, double b);
/**
* Returns of value of the first argument raised to the power of the
* second argument.
* <p>
* If (<code>a == 0.0</code>), then <code>b</code> must be
* greater than <code>0.0</code>; otherwise an exception is thrown.
* An exception also will occur if (<code>a <= 0.0</code>)
* and <code>b</code> is not equal to a whole number.
*
* @param a a <code>double</code> value.
* @param b a <code>double</code> value.
* @return the value <code>a<sup>b</sup></code>.
* @exception ArithmeticException if (<code>a == 0.0</code>) and
* (<code>b <= 0.0</code>), or
* if (<code>a <= 0.0</code>) and <code>b</code>
* is not equal to a whole number.
* @since JDK1.0
*/
public static native double pow(double a, double b);
/**
* Returns the closest <code>int</code> to the argument.
* <p>
* If the argument is negative infinity or any value less than or
* equal to the value of <code>Integer.MIN_VALUE</code>, the result is
* equal to the value of <code>Integer.MIN_VALUE</code>.
* <p>
* If the argument is positive infinity or any value greater than or
* equal to the value of <code>Integer.MAX_VALUE</code>, the result is
* equal to the value of <code>Integer.MAX_VALUE</code>.
*
* @param a a <code>float</code> value.
* @return the value of the argument rounded to the nearest
* <code>int</code> value.
* @see java.lang.Integer#MAX_VALUE
* @see java.lang.Integer#MIN_VALUE
* @since JDK1.0
*/
public static int round(float a) {
return (int)floor(a + 0.5f);
}
/**
* Returns the closest <code>long</code> to the argument.
* <p>
* If the argument is negative infinity or any value less than or
* equal to the value of <code>Long.MIN_VALUE</code>, the result is
* equal to the value of <code>Long.MIN_VALUE</code>.
* <p>
* If the argument is positive infinity or any value greater than or
* equal to the value of <code>Long.MAX_VALUE</code>, the result is
* equal to the value of <code>Long.MAX_VALUE</code>.
*
* @param a a <code>double</code> value.
* @return the value of the argument rounded to the nearest
* <code>long</code> value.
* @see java.lang.Long#MAX_VALUE
* @see java.lang.Long#MIN_VALUE
* @since JDK1.0
*/
public static long round(double a) {
return (long)floor(a + 0.5d);
}
private static Random randomNumberGenerator;
/**
* Returns a random number between <code>0.0</code> and <code>1.0</code>.
* Random number generators are often referred to as pseudorandom number
* generators because the numbers produced tend to repeat themselves after
* a period of time.
*
* @return a pseudorandom <code>double</code> between <code>0.0</code>
* and <code>1.0</code>.
* @see java.util.Random#nextDouble()
* @since JDK1.0
*/
public static synchronized double random() {
if (randomNumberGenerator == null)
randomNumberGenerator = new Random();
return randomNumberGenerator.nextDouble();
}
/**
* Returns the absolute value of an <code>int</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
* <p>
* Note that if the argument is equal to the value of
* <code>Integer.MIN_VALUE</code>, the most negative representable
* <code>int</code> value, the result is that same value, which is
* negative.
*
* @param a an <code>int</code> value.
* @return the absolute value of the argument.
* @see java.lang.Integer#MIN_VALUE
* @since JDK1.0
*/
public static int abs(int a) {
return (a < 0) ? -a : a;
}
/**
* Returns the absolute value of a <code>long</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
* <p>
* Note that if the argument is equal to the value of
* <code>Long.MIN_VALUE</code>, the most negative representable
* <code>long</code> value, the result is that same value, which is
* negative.
*
* @param a a <code>long</code> value.
* @return the absolute value of the argument.
* @see java.lang.Long#MIN_VALUE
* @since JDK1.0
*/
public static long abs(long a) {
return (a < 0) ? -a : a;
}
/**
* Returns the absolute value of a <code>float</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
*
* @param a a <code>float</code> value.
* @return the absolute value of the argument.
* @since JDK1.0
*/
public static float abs(float a) {
return (a < 0) ? -a : a;
}
/**
* Returns the absolute value of a <code>double</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
*
* @param a a <code>double</code> value.
* @return the absolute value of the argument.
* @since JDK1.0
*/
public static double abs(double a) {
return (a < 0) ? -a : a;
}
/**
* Returns the greater of two <code>int</code> values.
*
* @param a an <code>int</code> value.
* @param b an <code>int</code> value.
* @return the larger of <code>a</code> and <code>b</code>.
* @since JDK1.0
*/
public static int max(int a, int b) {
return (a >= b) ? a : b;
}
/**
* Returns the greater of two <code>long</code> values.
*
* @param a a <code>long</code> value.
* @param b a <code>long</code> value.
* @return the larger of <code>a</code> and <code>b</code>.
* @since JDK1.0
*/
public static long max(long a, long b) {
return (a >= b) ? a : b;
}
private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
/**
* Returns the greater of two <code>float</code> values. If either value
* is <code>NaN</code>, then the result is <code>NaN</code>. Unlike the
* the numerical comparison operators, this method considers negative zero
* to be strictly smaller than positive zero.
*
* @param a a <code>float</code> value.
* @param b a <code>float</code> value.
* @return the larger of <code>a</code> and <code>b</code>.
* @since JDK1.0
*/
public static float max(float a, float b) {
if (a != a) return a; // a is NaN
if ((a == 0.0f) && (b == 0.0f)
&& (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
return b;
}
return (a >= b) ? a : b;
}
/**
* Returns the greater of two <code>double</code> values. If either value
* is <code>NaN</code>, then the result is <code>NaN</code>. Unlike the
* the numerical comparison operators, this method considers negative zero
* to be strictly smaller than positive zero.
*
* @param a a <code>double</code> value.
* @param b a <code>double</code> value.
* @return the larger of <code>a</code> and <code>b</code>.
* @since JDK1.0
*/
public static double max(double a, double b) {
if (a != a) return a; // a is NaN
if ((a == 0.0d) && (b == 0.0d)
&& (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
return b;
}
return (a >= b) ? a : b;
}
/**
* Returns the smaller of two <code>int</code> values.
*
* @param a an <code>int</code> value.
* @param b an <code>int</code> value.
* @return the smaller of <code>a</code> and <code>b</code>.
* @since JDK1.0
*/
public static int min(int a, int b) {
return (a <= b) ? a : b;
}
/**
* Returns the smaller of two <code>long</code> values.
*
* @param a a <code>long</code> value.
* @param b a <code>long</code> value.
* @return the smaller of <code>a</code> and <code>b</code>.
* @since JDK1.0
*/
public static long min(long a, long b) {
return (a <= b) ? a : b;
}
/**
* Returns the smaller of two <code>float</code> values. If either value
* is <code>NaN</code>, then the result is <code>NaN</code>. Unlike the
* the numerical comparison operators, this method considers negative zero
* to be strictly smaller than positive zero.
*
* @param a a <code>float</code> value.
* @param b a <code>float</code> value.
* @return the smaller of <code>a</code> and <code>b.</code>
* @since JDK1.0
*/
public static float min(float a, float b) {
if (a != a) return a; // a is NaN
if ((a == 0.0f) && (b == 0.0f)
&& (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
return b;
}
return (a <= b) ? a : b;
}
/**
* Returns the smaller of two <code>double</code> values. If either value
* is <code>NaN</code>, then the result is <code>NaN</code>. Unlike the
* the numerical comparison operators, this method considers negative zero
* to be strictly smaller than positive zero.
*
* @param a a <code>double</code> value.
* @param b a <code>double</code> value.
* @return the smaller of <code>a</code> and <code>b</code>.
* @since JDK1.0
*/
public static double min(double a, double b) {
if (a != a) return a; // a is NaN
if ((a == 0.0d) && (b == 0.0d)
&& (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
return b;
}
return (a <= b) ? a : b;
}
}